Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotassuniOLD Structured version   Unicode version

Theorem riotassuniOLD 6275
 Description: The restricted iota class is limited in size by the base set. (Contributed by Mario Carneiro, 24-Dec-2016.) Obsolete as of 28-Aug-2018. (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
riotassuniOLD
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem riotassuniOLD
StepHypRef Expression
1 riotauni 6244 . . 3
2 ssrab2 3567 . . . . 5
32unissi 4253 . . . 4
4 ssun2 3650 . . . 4
53, 4sstri 3495 . . 3
61, 5syl6eqss 3536 . 2
7 riotaund 6274 . . 3
8 0ss 3796 . . 3
97, 8syl6eqss 3536 . 2
106, 9pm2.61i 164 1
 Colors of variables: wff setvar class Syntax hints:   wn 3  wreu 2793  crab 2795   cun 3456   wss 3458  c0 3767  cpw 3993  cuni 4230  crio 6237 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-nul 3768  df-sn 4011  df-pr 4013  df-uni 4231  df-iota 5537  df-riota 6238 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator