Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaocN Structured version   Unicode version

Theorem riotaocN 34024
Description: The orthocomplement of the unique poset element such that 
ps. (riotaneg 10518 analog.) (Contributed by NM, 16-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
riotaoc.b  |-  B  =  ( Base `  K
)
riotaoc.o  |-  ._|_  =  ( oc `  K )
riotaoc.a  |-  ( x  =  (  ._|_  `  y
)  ->  ( ph  <->  ps ) )
Assertion
Ref Expression
riotaocN  |-  ( ( K  e.  OP  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  B  ph )  =  (  ._|_  `  ( iota_ y  e.  B  ps ) ) )
Distinct variable groups:    x, y, B    x, K, y    x,  ._|_ ,
y    ph, y    ps, x
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem riotaocN
StepHypRef Expression
1 nfcv 2629 . . 3  |-  F/_ y  ._|_
2 nfriota1 6252 . . 3  |-  F/_ y
( iota_ y  e.  B  ps )
31, 2nffv 5873 . 2  |-  F/_ y
(  ._|_  `  ( iota_ y  e.  B  ps ) )
4 riotaoc.b . . 3  |-  B  =  ( Base `  K
)
5 riotaoc.o . . 3  |-  ._|_  =  ( oc `  K )
64, 5opoccl 34009 . 2  |-  ( ( K  e.  OP  /\  y  e.  B )  ->  (  ._|_  `  y )  e.  B )
74, 5opoccl 34009 . 2  |-  ( ( K  e.  OP  /\  ( iota_ y  e.  B  ps )  e.  B
)  ->  (  ._|_  `  ( iota_ y  e.  B  ps ) )  e.  B
)
8 riotaoc.a . 2  |-  ( x  =  (  ._|_  `  y
)  ->  ( ph  <->  ps ) )
9 fveq2 5866 . 2  |-  ( y  =  ( iota_ y  e.  B  ps )  -> 
(  ._|_  `  y )  =  (  ._|_  `  ( iota_ y  e.  B  ps ) ) )
104, 5opoccl 34009 . . 3  |-  ( ( K  e.  OP  /\  x  e.  B )  ->  (  ._|_  `  x )  e.  B )
114, 5opcon2b 34012 . . 3  |-  ( ( K  e.  OP  /\  x  e.  B  /\  y  e.  B )  ->  ( x  =  ( 
._|_  `  y )  <->  y  =  (  ._|_  `  x )
) )
1210, 11reuhypd 4674 . 2  |-  ( ( K  e.  OP  /\  x  e.  B )  ->  E! y  e.  B  x  =  (  ._|_  `  y ) )
133, 6, 7, 8, 9, 12riotaxfrd 6276 1  |-  ( ( K  e.  OP  /\  E! x  e.  B  ph )  ->  ( iota_ x  e.  B  ph )  =  (  ._|_  `  ( iota_ y  e.  B  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E!wreu 2816   ` cfv 5588   iota_crio 6244   Basecbs 14490   occoc 14563   OPcops 33987
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-nul 4576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-dm 5009  df-iota 5551  df-fv 5596  df-riota 6245  df-ov 6287  df-oposet 33991
This theorem is referenced by:  glbconN  34191
  Copyright terms: Public domain W3C validator