Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riotaeqdv Structured version   Unicode version

Theorem riotaeqdv 6268
 Description: Formula-building deduction rule for iota. (Contributed by NM, 15-Sep-2011.)
Hypothesis
Ref Expression
riotaeqdv.1
Assertion
Ref Expression
riotaeqdv
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem riotaeqdv
StepHypRef Expression
1 riotaeqdv.1 . . . . 5
21eleq2d 2499 . . . 4
32anbi1d 709 . . 3
43iotabidv 5586 . 2
5 df-riota 6267 . 2
6 df-riota 6267 . 2
74, 5, 63eqtr4g 2495 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370   wceq 1437   wcel 1870  cio 5563  crio 6266 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407 This theorem depends on definitions:  df-bi 188  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-rex 2788  df-uni 4223  df-iota 5565  df-riota 6267 This theorem is referenced by:  riotaeqbidv  6270  grpinvpropd  16680  funtransport  30583  fvtransport  30584
 Copyright terms: Public domain W3C validator