![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > riota2f | Structured version Visualization version Unicode version |
Description: This theorem shows a
condition that allows us to represent a descriptor
with a class expression ![]() |
Ref | Expression |
---|---|
riota2f.1 |
![]() ![]() ![]() ![]() |
riota2f.2 |
![]() ![]() ![]() ![]() |
riota2f.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
riota2f |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riota2f.1 |
. . 3
![]() ![]() ![]() ![]() | |
2 | 1 | nfel1 2608 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | 1 | a1i 11 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | riota2f.2 |
. . 3
![]() ![]() ![]() ![]() | |
5 | 4 | a1i 11 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | id 22 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | riota2f.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 7 | adantl 468 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | 2, 3, 5, 6, 8 | riota2df 6277 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1671 ax-4 1684 ax-5 1760 ax-6 1807 ax-7 1853 ax-10 1917 ax-11 1922 ax-12 1935 ax-13 2093 ax-ext 2433 |
This theorem depends on definitions: df-bi 189 df-or 372 df-an 373 df-3an 988 df-tru 1449 df-ex 1666 df-nf 1670 df-sb 1800 df-eu 2305 df-clab 2440 df-cleq 2446 df-clel 2449 df-nfc 2583 df-ral 2744 df-rex 2745 df-reu 2746 df-v 3049 df-sbc 3270 df-un 3411 df-sn 3971 df-pr 3973 df-uni 4202 df-iota 5549 df-riota 6257 |
This theorem is referenced by: riota2 6279 riotaprop 6280 riotass2 6283 riotass 6284 riotaxfrd 6287 cdlemksv2 34426 cdlemkuv2 34446 cdlemk36 34492 |
Copyright terms: Public domain | W3C validator |