Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  riota1 Structured version   Unicode version

Theorem riota1 6172
 Description: Property of restricted iota. Compare iota1 5495. (Contributed by Mario Carneiro, 15-Oct-2016.)
Assertion
Ref Expression
riota1
Distinct variable group:   ,
Allowed substitution hint:   ()

Proof of Theorem riota1
StepHypRef Expression
1 df-reu 2802 . . 3
2 iota1 5495 . . 3
31, 2sylbi 195 . 2
4 df-riota 6153 . . 3
54eqeq1i 2458 . 2
63, 5syl6bbr 263 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 184   wa 369   wceq 1370   wcel 1758  weu 2260  wreu 2797  cio 5479  crio 6152 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-rex 2801  df-reu 2802  df-v 3072  df-sbc 3287  df-un 3433  df-sn 3978  df-pr 3980  df-uni 4192  df-iota 5481  df-riota 6153 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator