![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rint0 | Structured version Visualization version Unicode version |
Description: Relative intersection of an empty set. (Contributed by Stefan O'Rear, 3-Apr-2015.) |
Ref | Expression |
---|---|
rint0 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inteq 4236 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | ineq2d 3633 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | int0 4247 |
. . . 4
![]() ![]() ![]() ![]() ![]() | |
4 | 3 | ineq2i 3630 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | inv1 3760 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | eqtri 2472 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 2, 6 | syl6eq 2500 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1668 ax-4 1681 ax-5 1757 ax-6 1804 ax-7 1850 ax-10 1914 ax-11 1919 ax-12 1932 ax-13 2090 ax-ext 2430 |
This theorem depends on definitions: df-bi 189 df-an 373 df-tru 1446 df-ex 1663 df-nf 1667 df-sb 1797 df-clab 2437 df-cleq 2443 df-clel 2446 df-nfc 2580 df-ral 2741 df-v 3046 df-dif 3406 df-in 3410 df-ss 3417 df-nul 3731 df-int 4234 |
This theorem is referenced by: incexclem 13887 incexc 13888 mrerintcl 15496 ismred2 15502 txtube 20648 |
Copyright terms: Public domain | W3C validator |