![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ringidval | Structured version Visualization version Unicode version |
Description: The value of the unity element of a ring. (Contributed by NM, 27-Aug-2011.) (Revised by Mario Carneiro, 27-Dec-2014.) |
Ref | Expression |
---|---|
ringidval.g |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ringidval.u |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ringidval |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ur 17784 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | fveq1i 5888 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | fnmgp 17773 |
. . . . 5
![]() ![]() ![]() | |
4 | fvco2 5962 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | mpan 681 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 5 | syl5eq 2507 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | 0g0 16554 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | fvprc 5881 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | fvprc 5881 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 9 | fveq2d 5891 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 7, 8, 10 | 3eqtr4a 2521 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 6, 11 | pm2.61i 169 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | ringidval.u |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | ringidval.g |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | 14 | fveq2i 5890 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 12, 13, 15 | 3eqtr4i 2493 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-8 1899 ax-9 1906 ax-10 1925 ax-11 1930 ax-12 1943 ax-13 2101 ax-ext 2441 ax-sep 4538 ax-nul 4547 ax-pow 4594 ax-pr 4652 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3an 993 df-tru 1457 df-ex 1674 df-nf 1678 df-sb 1808 df-eu 2313 df-mo 2314 df-clab 2448 df-cleq 2454 df-clel 2457 df-nfc 2591 df-ne 2634 df-ral 2753 df-rex 2754 df-rab 2757 df-v 3058 df-sbc 3279 df-dif 3418 df-un 3420 df-in 3422 df-ss 3429 df-nul 3743 df-if 3893 df-sn 3980 df-pr 3982 df-op 3986 df-uni 4212 df-br 4416 df-opab 4475 df-mpt 4476 df-id 4767 df-xp 4858 df-rel 4859 df-cnv 4860 df-co 4861 df-dm 4862 df-rn 4863 df-res 4864 df-ima 4865 df-iota 5564 df-fun 5602 df-fn 5603 df-fv 5608 df-ov 6317 df-slot 15173 df-base 15174 df-0g 15388 df-mgp 17772 df-ur 17784 |
This theorem is referenced by: dfur2 17786 srgidcl 17799 srgidmlem 17801 issrgid 17804 srgpcomp 17813 srg1expzeq1 17820 srgbinom 17826 ringidcl 17849 ringidmlem 17851 isringid 17854 prds1 17890 oppr1 17910 unitsubm 17946 rngidpropd 17971 dfrhm2 17993 isrhm2d 18004 rhm1 18006 subrgsubm 18069 issubrg3 18084 assamulgscmlem1 18620 mplcoe3 18738 mplcoe5 18740 mplbas2 18742 evlslem1 18786 ply1scltm 18922 lply1binomsc 18949 evls1gsummul 18962 evl1gsummul 18996 cnfldexp 19049 expmhm 19084 nn0srg 19085 rge0srg 19086 madetsumid 19534 mat1mhm 19557 scmatmhm 19607 mdet0pr 19665 mdetunilem7 19691 smadiadetlem4 19742 mat2pmatmhm 19805 pm2mpmhm 19892 chfacfscmulgsum 19932 chfacfpmmulgsum 19936 cpmadugsumlemF 19948 efsubm 23548 amgmlem 23963 amgm 23964 wilthlem2 24042 wilthlem3 24043 dchrelbas3 24214 dchrzrh1 24220 dchrmulcl 24225 dchrn0 24226 dchrinvcl 24229 dchrfi 24231 dchrabs 24236 sumdchr2 24246 rpvmasum2 24398 psgnid 28658 iistmd 28756 isdomn3 36125 mon1psubm 36127 deg1mhm 36128 c0rhm 40184 c0rnghm 40185 |
Copyright terms: Public domain | W3C validator |