MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rimul Structured version   Unicode version

Theorem rimul 10600
Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
rimul  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )

Proof of Theorem rimul
StepHypRef Expression
1 inelr 10599 . 2  |-  -.  _i  e.  RR
2 ax-icn 9597 . . . . . . 7  |-  _i  e.  CC
32a1i 11 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A  =/=  0
)  ->  _i  e.  CC )
4 simpll 758 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A  =/=  0
)  ->  A  e.  RR )
54recnd 9668 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A  =/=  0
)  ->  A  e.  CC )
6 simpr 462 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A  =/=  0
)  ->  A  =/=  0 )
73, 5, 6divcan4d 10388 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A  =/=  0
)  ->  ( (
_i  x.  A )  /  A )  =  _i )
8 simplr 760 . . . . . 6  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A  =/=  0
)  ->  ( _i  x.  A )  e.  RR )
98, 4, 6redivcld 10434 . . . . 5  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A  =/=  0
)  ->  ( (
_i  x.  A )  /  A )  e.  RR )
107, 9eqeltrrd 2518 . . . 4  |-  ( ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  /\  A  =/=  0
)  ->  _i  e.  RR )
1110ex 435 . . 3  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( A  =/=  0  ->  _i  e.  RR ) )
1211necon1bd 2649 . 2  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  ( -.  _i  e.  RR  ->  A  = 
0 ) )
131, 12mpi 21 1  |-  ( ( A  e.  RR  /\  ( _i  x.  A
)  e.  RR )  ->  A  =  0 )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1870    =/= wne 2625  (class class class)co 6305   CCcc 9536   RRcr 9537   0cc0 9538   _ici 9540    x. cmul 9543    / cdiv 10268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-div 10269
This theorem is referenced by:  cru  10601  cju  10605  crre  13156  tanarg  23433
  Copyright terms: Public domain W3C validator