HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz3i Structured version   Unicode version

Theorem riesz3i 25466
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1  |-  T  e. 
LinFn
nlelch.2  |-  T  e. 
ConFn
Assertion
Ref Expression
riesz3i  |-  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Distinct variable group:    w, v, T

Proof of Theorem riesz3i
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 ax-hv0cl 24405 . . 3  |-  0h  e.  ~H
2 nlelch.1 . . . . . . 7  |-  T  e. 
LinFn
32lnfnfi 25445 . . . . . 6  |-  T : ~H
--> CC
4 fveq2 5691 . . . . . . . . 9  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( _|_ `  ( _|_ `  ( null `  T ) ) )  =  ( _|_ `  0H ) )
5 nlelch.2 . . . . . . . . . . 11  |-  T  e. 
ConFn
62, 5nlelchi 25465 . . . . . . . . . 10  |-  ( null `  T )  e.  CH
76ococi 24808 . . . . . . . . 9  |-  ( _|_ `  ( _|_ `  ( null `  T ) ) )  =  ( null `  T )
8 choc0 24729 . . . . . . . . 9  |-  ( _|_ `  0H )  =  ~H
94, 7, 83eqtr3g 2498 . . . . . . . 8  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( null `  T )  =  ~H )
109eleq2d 2510 . . . . . . 7  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( v  e.  ( null `  T
)  <->  v  e.  ~H ) )
1110biimpar 485 . . . . . 6  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  v  e.  ( null `  T
) )
12 elnlfn2 25333 . . . . . 6  |-  ( ( T : ~H --> CC  /\  v  e.  ( null `  T ) )  -> 
( T `  v
)  =  0 )
133, 11, 12sylancr 663 . . . . 5  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  ( T `  v )  =  0 )
14 hi02 24499 . . . . . 6  |-  ( v  e.  ~H  ->  (
v  .ih  0h )  =  0 )
1514adantl 466 . . . . 5  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  (
v  .ih  0h )  =  0 )
1613, 15eqtr4d 2478 . . . 4  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  ( T `  v )  =  ( v  .ih  0h ) )
1716ralrimiva 2799 . . 3  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h )
)
18 oveq2 6099 . . . . . 6  |-  ( w  =  0h  ->  (
v  .ih  w )  =  ( v  .ih  0h ) )
1918eqeq2d 2454 . . . . 5  |-  ( w  =  0h  ->  (
( T `  v
)  =  ( v 
.ih  w )  <->  ( T `  v )  =  ( v  .ih  0h )
) )
2019ralbidv 2735 . . . 4  |-  ( w  =  0h  ->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h )
) )
2120rspcev 3073 . . 3  |-  ( ( 0h  e.  ~H  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h ) )  ->  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w ) )
221, 17, 21sylancr 663 . 2  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w ) )
236choccli 24710 . . . 4  |-  ( _|_ `  ( null `  T
) )  e.  CH
2423chne0i 24856 . . 3  |-  ( ( _|_ `  ( null `  T ) )  =/= 
0H 
<->  E. u  e.  ( _|_ `  ( null `  T ) ) u  =/=  0h )
2523cheli 24635 . . . . 5  |-  ( u  e.  ( _|_ `  ( null `  T ) )  ->  u  e.  ~H )
263ffvelrni 5842 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  ( T `  u )  e.  CC )
2726adantr 465 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( T `  u
)  e.  CC )
28 hicl 24482 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  u  e.  ~H )  ->  ( u  .ih  u
)  e.  CC )
2928anidms 645 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  (
u  .ih  u )  e.  CC )
3029adantr 465 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( u  .ih  u
)  e.  CC )
31 his6 24501 . . . . . . . . . . . . 13  |-  ( u  e.  ~H  ->  (
( u  .ih  u
)  =  0  <->  u  =  0h ) )
3231necon3bid 2643 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  (
( u  .ih  u
)  =/=  0  <->  u  =/=  0h ) )
3332biimpar 485 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( u  .ih  u
)  =/=  0 )
3427, 30, 33divcld 10107 . . . . . . . . . 10  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( T `  u )  /  (
u  .ih  u )
)  e.  CC )
3534cjcld 12685 . . . . . . . . 9  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( * `  (
( T `  u
)  /  ( u 
.ih  u ) ) )  e.  CC )
36 simpl 457 . . . . . . . . 9  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  ->  u  e.  ~H )
37 hvmulcl 24415 . . . . . . . . 9  |-  ( ( ( * `  (
( T `  u
)  /  ( u 
.ih  u ) ) )  e.  CC  /\  u  e.  ~H )  ->  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
3835, 36, 37syl2anc 661 . . . . . . . 8  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
3938adantll 713 . . . . . . 7  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
40 hvmulcl 24415 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H )  ->  ( ( T `  u )  .h  v
)  e.  ~H )
4126, 40sylan 471 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  .h  v
)  e.  ~H )
423ffvelrni 5842 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  ~H  ->  ( T `  v )  e.  CC )
43 hvmulcl 24415 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
4442, 43sylan 471 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
4544ancoms 453 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
46 simpl 457 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  u  e.  ~H )
47 his2sub 24494 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H  /\  u  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  ( ( ( ( T `  u )  .h  v
)  .ih  u )  -  ( ( ( T `  v )  .h  u )  .ih  u ) ) )
4841, 45, 46, 47syl3anc 1218 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  ( ( ( ( T `  u )  .h  v
)  .ih  u )  -  ( ( ( T `  v )  .h  u )  .ih  u ) ) )
4926adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  u
)  e.  CC )
50 simpr 461 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  v  e.  ~H )
51 ax-his3 24486 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
( ( T `  u )  .h  v
)  .ih  u )  =  ( ( T `
 u )  x.  ( v  .ih  u
) ) )
5249, 50, 46, 51syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  .ih  u
)  =  ( ( T `  u )  x.  ( v  .ih  u ) ) )
5342adantl 466 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  v
)  e.  CC )
54 ax-his3 24486 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H  /\  u  e.  ~H )  ->  (
( ( T `  v )  .h  u
)  .ih  u )  =  ( ( T `
 v )  x.  ( u  .ih  u
) ) )
5553, 46, 46, 54syl3anc 1218 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 v )  .h  u )  .ih  u
)  =  ( ( T `  v )  x.  ( u  .ih  u ) ) )
5652, 55oveq12d 6109 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  .ih  u )  -  (
( ( T `  v )  .h  u
)  .ih  u )
)  =  ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) ) )
5748, 56eqtr2d 2476 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  x.  ( v  .ih  u
) )  -  (
( T `  v
)  x.  ( u 
.ih  u ) ) )  =  ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u ) )
5857adantll 713 . . . . . . . . . . . . 13  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  .ih  u ) )
59 hvsubcl 24419 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ~H )
6041, 45, 59syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ~H )
612lnfnsubi 25450 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  ( ( T `  ( ( T `  u )  .h  v ) )  -  ( T `  ( ( T `  v )  .h  u
) ) ) )
6241, 45, 61syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  ( ( T `  ( ( T `  u )  .h  v ) )  -  ( T `  ( ( T `  v )  .h  u
) ) ) )
632lnfnmuli 25448 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H )  ->  ( T `  (
( T `  u
)  .h  v ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
6426, 63sylan 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( T `  u
)  .h  v ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
652lnfnmuli 25448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  v )  x.  ( T `  u ) ) )
66 mulcom 9368 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( T `  v
)  e.  CC  /\  ( T `  u )  e.  CC )  -> 
( ( T `  v )  x.  ( T `  u )
)  =  ( ( T `  u )  x.  ( T `  v ) ) )
6726, 66sylan2 474 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( ( T `  v )  x.  ( T `  u )
)  =  ( ( T `  u )  x.  ( T `  v ) ) )
6865, 67eqtrd 2475 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
6942, 68sylan 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
7069ancoms 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
7164, 70oveq12d 6109 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  ( ( T `  u )  .h  v
) )  -  ( T `  ( ( T `  v )  .h  u ) ) )  =  ( ( ( T `  u )  x.  ( T `  v ) )  -  ( ( T `  u )  x.  ( T `  v )
) ) )
72 mulcl 9366 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T `  u
)  e.  CC  /\  ( T `  v )  e.  CC )  -> 
( ( T `  u )  x.  ( T `  v )
)  e.  CC )
7326, 42, 72syl2an 477 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  x.  ( T `  v )
)  e.  CC )
7473subidd 9707 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  x.  ( T `  v
) )  -  (
( T `  u
)  x.  ( T `
 v ) ) )  =  0 )
7562, 71, 743eqtrd 2479 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  0 )
76 elnlfn 25332 . . . . . . . . . . . . . . . . . 18  |-  ( T : ~H --> CC  ->  ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T )  <->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ~H  /\  ( T `  ( (
( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) ) )  =  0 ) ) )
773, 76ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ( null `  T
)  <->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  e. 
~H  /\  ( T `  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) ) )  =  0 ) )
7860, 75, 77sylanbrc 664 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T ) )
796chssii 24634 . . . . . . . . . . . . . . . . 17  |-  ( null `  T )  C_  ~H
80 ocorth 24694 . . . . . . . . . . . . . . . . 17  |-  ( (
null `  T )  C_ 
~H  ->  ( ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ( null `  T
)  /\  u  e.  ( _|_ `  ( null `  T ) ) )  ->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  .ih  u )  =  0 ) )
8179, 80ax-mp 5 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T )  /\  u  e.  ( _|_ `  ( null `  T ) ) )  ->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u )  =  0 )
8278, 81sylan 471 . . . . . . . . . . . . . . 15  |-  ( ( ( u  e.  ~H  /\  v  e.  ~H )  /\  u  e.  ( _|_ `  ( null `  T
) ) )  -> 
( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  0 )
8382ancoms 453 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( _|_ `  ( null `  T
) )  /\  (
u  e.  ~H  /\  v  e.  ~H )
)  ->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u )  =  0 )
8483anassrs 648 . . . . . . . . . . . . 13  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  .ih  u )  =  0 )
8558, 84eqtrd 2475 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  0 )
86 hicl 24482 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( v  .ih  u
)  e.  CC )
8786ancoms 453 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( v  .ih  u
)  e.  CC )
8849, 87mulcld 9406 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC )
89 mulcl 9366 . . . . . . . . . . . . . . 15  |-  ( ( ( T `  v
)  e.  CC  /\  ( u  .ih  u )  e.  CC )  -> 
( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )
9042, 29, 89syl2anr 478 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )
9188, 90subeq0ad 9729 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  0  <-> 
( ( T `  u )  x.  (
v  .ih  u )
)  =  ( ( T `  v )  x.  ( u  .ih  u ) ) ) )
9291adantll 713 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) )  =  0  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
9385, 92mpbid 210 . . . . . . . . . . 11  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) )
9493adantlr 714 . . . . . . . . . 10  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) )
9588adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  e.  CC )
9642adantl 466 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  v )  e.  CC )
9730, 33jca 532 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( u  .ih  u )  e.  CC  /\  ( u  .ih  u
)  =/=  0 ) )
9897adantr 465 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( u 
.ih  u )  e.  CC  /\  ( u 
.ih  u )  =/=  0 ) )
99 divmul3 9999 . . . . . . . . . . . 12  |-  ( ( ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC  /\  ( T `  v )  e.  CC  /\  (
( u  .ih  u
)  e.  CC  /\  ( u  .ih  u )  =/=  0 ) )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
10095, 96, 98, 99syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
101100adantlll 717 . . . . . . . . . 10  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
10294, 101mpbird 232 . . . . . . . . 9  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( T `  v ) )
10327adantr 465 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  u )  e.  CC )
10487adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( v  .ih  u )  e.  CC )
105 div23 10013 . . . . . . . . . . . 12  |-  ( ( ( T `  u
)  e.  CC  /\  ( v  .ih  u
)  e.  CC  /\  ( ( u  .ih  u )  e.  CC  /\  ( u  .ih  u
)  =/=  0 ) )  ->  ( (
( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( ( ( T `
 u )  / 
( u  .ih  u
) )  x.  (
v  .ih  u )
) )
106103, 104, 98, 105syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( ( ( T `  u )  /  (
u  .ih  u )
)  x.  ( v 
.ih  u ) ) )
10734adantr 465 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  / 
( u  .ih  u
) )  e.  CC )
108 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  v  e.  ~H )
109 simpll 753 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  u  e.  ~H )
110 his52 24489 . . . . . . . . . . . 12  |-  ( ( ( ( T `  u )  /  (
u  .ih  u )
)  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
v  .ih  ( (
* `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) )  =  ( ( ( T `  u )  /  ( u  .ih  u ) )  x.  ( v  .ih  u
) ) )
111107, 108, 109, 110syl3anc 1218 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) )  =  ( ( ( T `  u )  /  (
u  .ih  u )
)  x.  ( v 
.ih  u ) ) )
112106, 111eqtr4d 2478 . . . . . . . . . 10  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
113112adantlll 717 . . . . . . . . 9  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
114102, 113eqtr3d 2477 . . . . . . . 8  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
115114ralrimiva 2799 . . . . . . 7  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )
116 oveq2 6099 . . . . . . . . . 10  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  (
v  .ih  w )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )
117116eqeq2d 2454 . . . . . . . . 9  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  (
( T `  v
)  =  ( v 
.ih  w )  <->  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) ) )
118117ralbidv 2735 . . . . . . . 8  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) ) )
119118rspcev 3073 . . . . . . 7  |-  ( ( ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12039, 115, 119syl2anc 661 . . . . . 6  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
121120ex 434 . . . . 5  |-  ( ( u  e.  ( _|_ `  ( null `  T
) )  /\  u  e.  ~H )  ->  (
u  =/=  0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) ) )
12225, 121mpdan 668 . . . 4  |-  ( u  e.  ( _|_ `  ( null `  T ) )  ->  ( u  =/= 
0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) ) )
123122rexlimiv 2835 . . 3  |-  ( E. u  e.  ( _|_ `  ( null `  T
) ) u  =/= 
0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12424, 123sylbi 195 . 2  |-  ( ( _|_ `  ( null `  T ) )  =/= 
0H  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12522, 124pm2.61ine 2687 1  |-  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   A.wral 2715   E.wrex 2716    C_ wss 3328   -->wf 5414   ` cfv 5418  (class class class)co 6091   CCcc 9280   0cc0 9282    x. cmul 9287    - cmin 9595    / cdiv 9993   *ccj 12585   ~Hchil 24321    .h csm 24323    .ih csp 24324   0hc0v 24326    -h cmv 24327   _|_cort 24332   0Hc0h 24337   nullcnl 24354   ConFnccnfn 24355   LinFnclf 24356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cc 8604  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362  ax-hilex 24401  ax-hfvadd 24402  ax-hvcom 24403  ax-hvass 24404  ax-hv0cl 24405  ax-hvaddid 24406  ax-hfvmul 24407  ax-hvmulid 24408  ax-hvmulass 24409  ax-hvdistr1 24410  ax-hvdistr2 24411  ax-hvmul0 24412  ax-hfi 24481  ax-his1 24484  ax-his2 24485  ax-his3 24486  ax-his4 24487  ax-hcompl 24604
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-omul 6925  df-er 7101  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-fi 7661  df-sup 7691  df-oi 7724  df-card 8109  df-acn 8112  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-xneg 11089  df-xadd 11090  df-xmul 11091  df-ioo 11304  df-ico 11306  df-icc 11307  df-fz 11438  df-fzo 11549  df-fl 11642  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-clim 12966  df-rlim 12967  df-sum 13164  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-rest 14361  df-topn 14362  df-0g 14380  df-gsum 14381  df-topgen 14382  df-pt 14383  df-prds 14386  df-xrs 14440  df-qtop 14445  df-imas 14446  df-xps 14448  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-submnd 15465  df-mulg 15548  df-cntz 15835  df-cmn 16279  df-psmet 17809  df-xmet 17810  df-met 17811  df-bl 17812  df-mopn 17813  df-fbas 17814  df-fg 17815  df-cnfld 17819  df-top 18503  df-bases 18505  df-topon 18506  df-topsp 18507  df-cld 18623  df-ntr 18624  df-cls 18625  df-nei 18702  df-cn 18831  df-cnp 18832  df-lm 18833  df-haus 18919  df-tx 19135  df-hmeo 19328  df-fil 19419  df-fm 19511  df-flim 19512  df-flf 19513  df-xms 19895  df-ms 19896  df-tms 19897  df-cfil 20766  df-cau 20767  df-cmet 20768  df-grpo 23678  df-gid 23679  df-ginv 23680  df-gdiv 23681  df-ablo 23769  df-subgo 23789  df-vc 23924  df-nv 23970  df-va 23973  df-ba 23974  df-sm 23975  df-0v 23976  df-vs 23977  df-nmcv 23978  df-ims 23979  df-dip 24096  df-ssp 24120  df-ph 24213  df-cbn 24264  df-hnorm 24370  df-hba 24371  df-hvsub 24373  df-hlim 24374  df-hcau 24375  df-sh 24609  df-ch 24624  df-oc 24655  df-ch0 24656  df-nlfn 25250  df-cnfn 25251  df-lnfn 25252
This theorem is referenced by:  riesz4i  25467  riesz1  25469
  Copyright terms: Public domain W3C validator