HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  riesz3i Unicode version

Theorem riesz3i 22472
Description: A continuous linear functional can be expressed as an inner product. Existence part of Theorem 3.9 of [Beran] p. 104. (Contributed by NM, 13-Feb-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1  |-  T  e. 
LinFn
nlelch.2  |-  T  e. 
ConFn
Assertion
Ref Expression
riesz3i  |-  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Distinct variable group:    w, v, T

Proof of Theorem riesz3i
StepHypRef Expression
1 ax-hv0cl 21413 . . 3  |-  0h  e.  ~H
2 nlelch.1 . . . . . . 7  |-  T  e. 
LinFn
32lnfnfi 22451 . . . . . 6  |-  T : ~H
--> CC
4 fveq2 5377 . . . . . . . . 9  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( _|_ `  ( _|_ `  ( null `  T ) ) )  =  ( _|_ `  0H ) )
5 nlelch.2 . . . . . . . . . . 11  |-  T  e. 
ConFn
62, 5nlelchi 22471 . . . . . . . . . 10  |-  ( null `  T )  e.  CH
76ococi 21814 . . . . . . . . 9  |-  ( _|_ `  ( _|_ `  ( null `  T ) ) )  =  ( null `  T )
8 choc0 21735 . . . . . . . . 9  |-  ( _|_ `  0H )  =  ~H
94, 7, 83eqtr3g 2308 . . . . . . . 8  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( null `  T )  =  ~H )
109eleq2d 2320 . . . . . . 7  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  ( v  e.  ( null `  T
)  <->  v  e.  ~H ) )
1110biimpar 473 . . . . . 6  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  v  e.  ( null `  T
) )
12 elnlfn2 22339 . . . . . 6  |-  ( ( T : ~H --> CC  /\  v  e.  ( null `  T ) )  -> 
( T `  v
)  =  0 )
133, 11, 12sylancr 647 . . . . 5  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  ( T `  v )  =  0 )
14 hi02 21506 . . . . . 6  |-  ( v  e.  ~H  ->  (
v  .ih  0h )  =  0 )
1514adantl 454 . . . . 5  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  (
v  .ih  0h )  =  0 )
1613, 15eqtr4d 2288 . . . 4  |-  ( ( ( _|_ `  ( null `  T ) )  =  0H  /\  v  e.  ~H )  ->  ( T `  v )  =  ( v  .ih  0h ) )
1716ralrimiva 2588 . . 3  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h )
)
18 oveq2 5718 . . . . . 6  |-  ( w  =  0h  ->  (
v  .ih  w )  =  ( v  .ih  0h ) )
1918eqeq2d 2264 . . . . 5  |-  ( w  =  0h  ->  (
( T `  v
)  =  ( v 
.ih  w )  <->  ( T `  v )  =  ( v  .ih  0h )
) )
2019ralbidv 2527 . . . 4  |-  ( w  =  0h  ->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h )
) )
2120rcla4ev 2821 . . 3  |-  ( ( 0h  e.  ~H  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  0h ) )  ->  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w ) )
221, 17, 21sylancr 647 . 2  |-  ( ( _|_ `  ( null `  T ) )  =  0H  ->  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w ) )
236choccli 21716 . . . 4  |-  ( _|_ `  ( null `  T
) )  e.  CH
2423chne0i 21862 . . 3  |-  ( ( _|_ `  ( null `  T ) )  =/= 
0H 
<->  E. u  e.  ( _|_ `  ( null `  T ) ) u  =/=  0h )
2523cheli 21642 . . . . 5  |-  ( u  e.  ( _|_ `  ( null `  T ) )  ->  u  e.  ~H )
263ffvelrni 5516 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  ( T `  u )  e.  CC )
2726adantr 453 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( T `  u
)  e.  CC )
28 hicl 21489 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  u  e.  ~H )  ->  ( u  .ih  u
)  e.  CC )
2928anidms 629 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  (
u  .ih  u )  e.  CC )
3029adantr 453 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( u  .ih  u
)  e.  CC )
31 his6 21508 . . . . . . . . . . . . 13  |-  ( u  e.  ~H  ->  (
( u  .ih  u
)  =  0  <->  u  =  0h ) )
3231necon3bid 2447 . . . . . . . . . . . 12  |-  ( u  e.  ~H  ->  (
( u  .ih  u
)  =/=  0  <->  u  =/=  0h ) )
3332biimpar 473 . . . . . . . . . . 11  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( u  .ih  u
)  =/=  0 )
3427, 30, 33divcld 9416 . . . . . . . . . 10  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( T `  u )  /  (
u  .ih  u )
)  e.  CC )
3534cjcld 11558 . . . . . . . . 9  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( * `  (
( T `  u
)  /  ( u 
.ih  u ) ) )  e.  CC )
36 simpl 445 . . . . . . . . 9  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  ->  u  e.  ~H )
37 hvmulcl 21423 . . . . . . . . 9  |-  ( ( ( * `  (
( T `  u
)  /  ( u 
.ih  u ) ) )  e.  CC  /\  u  e.  ~H )  ->  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
3835, 36, 37syl2anc 645 . . . . . . . 8  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
3938adantll 697 . . . . . . 7  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H )
40 hvmulcl 21423 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H )  ->  ( ( T `  u )  .h  v
)  e.  ~H )
4126, 40sylan 459 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  .h  v
)  e.  ~H )
423ffvelrni 5516 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  ~H  ->  ( T `  v )  e.  CC )
43 hvmulcl 21423 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
4442, 43sylan 459 . . . . . . . . . . . . . . . . 17  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
4544ancoms 441 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  v )  .h  u
)  e.  ~H )
46 simpl 445 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  u  e.  ~H )
47 his2sub 21501 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H  /\  u  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  ( ( ( ( T `  u )  .h  v
)  .ih  u )  -  ( ( ( T `  v )  .h  u )  .ih  u ) ) )
4841, 45, 46, 47syl3anc 1187 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  ( ( ( ( T `  u )  .h  v
)  .ih  u )  -  ( ( ( T `  v )  .h  u )  .ih  u ) ) )
4926adantr 453 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  u
)  e.  CC )
50 simpr 449 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  v  e.  ~H )
51 ax-his3 21493 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
( ( T `  u )  .h  v
)  .ih  u )  =  ( ( T `
 u )  x.  ( v  .ih  u
) ) )
5249, 50, 46, 51syl3anc 1187 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  .ih  u
)  =  ( ( T `  u )  x.  ( v  .ih  u ) ) )
5342adantl 454 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  v
)  e.  CC )
54 ax-his3 21493 . . . . . . . . . . . . . . . . 17  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H  /\  u  e.  ~H )  ->  (
( ( T `  v )  .h  u
)  .ih  u )  =  ( ( T `
 v )  x.  ( u  .ih  u
) ) )
5553, 46, 46, 54syl3anc 1187 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 v )  .h  u )  .ih  u
)  =  ( ( T `  v )  x.  ( u  .ih  u ) ) )
5652, 55oveq12d 5728 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  .h  v )  .ih  u )  -  (
( ( T `  v )  .h  u
)  .ih  u )
)  =  ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) ) )
5748, 56eqtr2d 2286 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  x.  ( v  .ih  u
) )  -  (
( T `  v
)  x.  ( u 
.ih  u ) ) )  =  ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u ) )
5857adantll 697 . . . . . . . . . . . . 13  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  .ih  u ) )
59 hvsubcl 21427 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ~H )
6041, 45, 59syl2anc 645 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ~H )
612lnfnsubi 22456 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( T `  u )  .h  v
)  e.  ~H  /\  ( ( T `  v )  .h  u
)  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  ( ( T `  ( ( T `  u )  .h  v ) )  -  ( T `  ( ( T `  v )  .h  u
) ) ) )
6241, 45, 61syl2anc 645 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  ( ( T `  ( ( T `  u )  .h  v ) )  -  ( T `  ( ( T `  v )  .h  u
) ) ) )
632lnfnmuli 22454 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T `  u
)  e.  CC  /\  v  e.  ~H )  ->  ( T `  (
( T `  u
)  .h  v ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
6426, 63sylan 459 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( T `  u
)  .h  v ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
652lnfnmuli 22454 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  v )  x.  ( T `  u ) ) )
66 mulcom 8703 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( T `  v
)  e.  CC  /\  ( T `  u )  e.  CC )  -> 
( ( T `  v )  x.  ( T `  u )
)  =  ( ( T `  u )  x.  ( T `  v ) ) )
6726, 66sylan2 462 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( ( T `  v )  x.  ( T `  u )
)  =  ( ( T `  u )  x.  ( T `  v ) ) )
6865, 67eqtrd 2285 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( T `  v
)  e.  CC  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
6942, 68sylan 459 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
7069ancoms 441 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( T `  v
)  .h  u ) )  =  ( ( T `  u )  x.  ( T `  v ) ) )
7164, 70oveq12d 5728 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  ( ( T `  u )  .h  v
) )  -  ( T `  ( ( T `  v )  .h  u ) ) )  =  ( ( ( T `  u )  x.  ( T `  v ) )  -  ( ( T `  u )  x.  ( T `  v )
) ) )
72 mulcl 8701 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( T `  u
)  e.  CC  /\  ( T `  v )  e.  CC )  -> 
( ( T `  u )  x.  ( T `  v )
)  e.  CC )
7326, 42, 72syl2an 465 . . . . . . . . . . . . . . . . . . 19  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  x.  ( T `  v )
)  e.  CC )
7473subidd 9025 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  x.  ( T `  v
) )  -  (
( T `  u
)  x.  ( T `
 v ) ) )  =  0 )
7562, 71, 743eqtrd 2289 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( T `  (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) )  =  0 )
76 elnlfn 22338 . . . . . . . . . . . . . . . . . 18  |-  ( T : ~H --> CC  ->  ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T )  <->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ~H  /\  ( T `  ( (
( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) ) )  =  0 ) ) )
773, 76ax-mp 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ( null `  T
)  <->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  e. 
~H  /\  ( T `  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) ) )  =  0 ) )
7860, 75, 77sylanbrc 648 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T ) )
796chssii 21641 . . . . . . . . . . . . . . . . 17  |-  ( null `  T )  C_  ~H
80 ocorth 21700 . . . . . . . . . . . . . . . . 17  |-  ( (
null `  T )  C_ 
~H  ->  ( ( ( ( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) )  e.  ( null `  T
)  /\  u  e.  ( _|_ `  ( null `  T ) ) )  ->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  .ih  u )  =  0 ) )
8179, 80ax-mp 10 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( T `
 u )  .h  v )  -h  (
( T `  v
)  .h  u ) )  e.  ( null `  T )  /\  u  e.  ( _|_ `  ( null `  T ) ) )  ->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u )  =  0 )
8278, 81sylan 459 . . . . . . . . . . . . . . 15  |-  ( ( ( u  e.  ~H  /\  v  e.  ~H )  /\  u  e.  ( _|_ `  ( null `  T
) ) )  -> 
( ( ( ( T `  u )  .h  v )  -h  ( ( T `  v )  .h  u
) )  .ih  u
)  =  0 )
8382ancoms 441 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ( _|_ `  ( null `  T
) )  /\  (
u  e.  ~H  /\  v  e.  ~H )
)  ->  ( (
( ( T `  u )  .h  v
)  -h  ( ( T `  v )  .h  u ) ) 
.ih  u )  =  0 )
8483anassrs 632 . . . . . . . . . . . . 13  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  .h  v )  -h  ( ( T `
 v )  .h  u ) )  .ih  u )  =  0 )
8558, 84eqtrd 2285 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  0 )
86 hicl 21489 . . . . . . . . . . . . . . . 16  |-  ( ( v  e.  ~H  /\  u  e.  ~H )  ->  ( v  .ih  u
)  e.  CC )
8786ancoms 441 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( v  .ih  u
)  e.  CC )
8849, 87mulcld 8735 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC )
89 mulcl 8701 . . . . . . . . . . . . . . 15  |-  ( ( ( T `  v
)  e.  CC  /\  ( u  .ih  u )  e.  CC )  -> 
( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )
9042, 29, 89syl2anr 466 . . . . . . . . . . . . . 14  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )
91 subeq0 8953 . . . . . . . . . . . . . 14  |-  ( ( ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC  /\  ( ( T `  v )  x.  (
u  .ih  u )
)  e.  CC )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) )  =  0  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
9288, 90, 91syl2anc 645 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  v  e.  ~H )  ->  ( ( ( ( T `  u )  x.  ( v  .ih  u ) )  -  ( ( T `  v )  x.  (
u  .ih  u )
) )  =  0  <-> 
( ( T `  u )  x.  (
v  .ih  u )
)  =  ( ( T `  v )  x.  ( u  .ih  u ) ) ) )
9392adantll 697 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  -  ( ( T `
 v )  x.  ( u  .ih  u
) ) )  =  0  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
9485, 93mpbid 203 . . . . . . . . . . 11  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) )
9594adantlr 698 . . . . . . . . . 10  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) )
9688adantlr 698 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  x.  ( v  .ih  u
) )  e.  CC )
9742adantl 454 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  v )  e.  CC )
9830, 33jca 520 . . . . . . . . . . . . 13  |-  ( ( u  e.  ~H  /\  u  =/=  0h )  -> 
( ( u  .ih  u )  e.  CC  /\  ( u  .ih  u
)  =/=  0 ) )
9998adantr 453 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( u 
.ih  u )  e.  CC  /\  ( u 
.ih  u )  =/=  0 ) )
100 divmul3 9309 . . . . . . . . . . . 12  |-  ( ( ( ( T `  u )  x.  (
v  .ih  u )
)  e.  CC  /\  ( T `  v )  e.  CC  /\  (
( u  .ih  u
)  e.  CC  /\  ( u  .ih  u )  =/=  0 ) )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
10196, 97, 99, 100syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
102101adantlll 701 . . . . . . . . . 10  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( ( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( T `  v
)  <->  ( ( T `
 u )  x.  ( v  .ih  u
) )  =  ( ( T `  v
)  x.  ( u 
.ih  u ) ) ) )
10395, 102mpbird 225 . . . . . . . . 9  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( T `  v ) )
10427adantr 453 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  u )  e.  CC )
10587adantlr 698 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( v  .ih  u )  e.  CC )
106 div23 9323 . . . . . . . . . . . 12  |-  ( ( ( T `  u
)  e.  CC  /\  ( v  .ih  u
)  e.  CC  /\  ( ( u  .ih  u )  e.  CC  /\  ( u  .ih  u
)  =/=  0 ) )  ->  ( (
( T `  u
)  x.  ( v 
.ih  u ) )  /  ( u  .ih  u ) )  =  ( ( ( T `
 u )  / 
( u  .ih  u
) )  x.  (
v  .ih  u )
) )
107104, 105, 99, 106syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( ( ( T `  u )  /  (
u  .ih  u )
)  x.  ( v 
.ih  u ) ) )
10834adantr 453 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( T `
 u )  / 
( u  .ih  u
) )  e.  CC )
109 simpr 449 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  v  e.  ~H )
110 simpll 733 . . . . . . . . . . . 12  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  u  e.  ~H )
111 his52 21496 . . . . . . . . . . . 12  |-  ( ( ( ( T `  u )  /  (
u  .ih  u )
)  e.  CC  /\  v  e.  ~H  /\  u  e.  ~H )  ->  (
v  .ih  ( (
* `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) )  =  ( ( ( T `  u )  /  ( u  .ih  u ) )  x.  ( v  .ih  u
) ) )
112108, 109, 110, 111syl3anc 1187 . . . . . . . . . . 11  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) )  =  ( ( ( T `  u )  /  (
u  .ih  u )
)  x.  ( v 
.ih  u ) ) )
113107, 112eqtr4d 2288 . . . . . . . . . 10  |-  ( ( ( u  e.  ~H  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
114113adantlll 701 . . . . . . . . 9  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( ( ( T `  u )  x.  ( v  .ih  u ) )  / 
( u  .ih  u
) )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
115103, 114eqtr3d 2287 . . . . . . . 8  |-  ( ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  /\  v  e.  ~H )  ->  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) )
116115ralrimiva 2588 . . . . . . 7  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )
117 oveq2 5718 . . . . . . . . . 10  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  (
v  .ih  w )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )
118117eqeq2d 2264 . . . . . . . . 9  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  (
( T `  v
)  =  ( v 
.ih  w )  <->  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) ) )
119118ralbidv 2527 . . . . . . . 8  |-  ( w  =  ( ( * `
 ( ( T `
 u )  / 
( u  .ih  u
) ) )  .h  u )  ->  ( A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w )  <->  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  ( u  .ih  u ) ) )  .h  u ) ) ) )
120119rcla4ev 2821 . . . . . . 7  |-  ( ( ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
)  e.  ~H  /\  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  ( ( * `  ( ( T `  u )  /  (
u  .ih  u )
) )  .h  u
) ) )  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12139, 116, 120syl2anc 645 . . . . . 6  |-  ( ( ( u  e.  ( _|_ `  ( null `  T ) )  /\  u  e.  ~H )  /\  u  =/=  0h )  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
122121ex 425 . . . . 5  |-  ( ( u  e.  ( _|_ `  ( null `  T
) )  /\  u  e.  ~H )  ->  (
u  =/=  0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) ) )
12325, 122mpdan 652 . . . 4  |-  ( u  e.  ( _|_ `  ( null `  T ) )  ->  ( u  =/= 
0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) ) )
124123rexlimiv 2623 . . 3  |-  ( E. u  e.  ( _|_ `  ( null `  T
) ) u  =/= 
0h  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12524, 124sylbi 189 . 2  |-  ( ( _|_ `  ( null `  T ) )  =/= 
0H  ->  E. w  e.  ~H  A. v  e.  ~H  ( T `  v )  =  ( v  .ih  w ) )
12622, 125pm2.61ine 2488 1  |-  E. w  e.  ~H  A. v  e. 
~H  ( T `  v )  =  ( v  .ih  w )
Colors of variables: wff set class
Syntax hints:    -> wi 6    <-> wb 178    /\ wa 360    = wceq 1619    e. wcel 1621    =/= wne 2412   A.wral 2509   E.wrex 2510    C_ wss 3078   -->wf 4588   ` cfv 4592  (class class class)co 5710   CCcc 8615   0cc0 8617    x. cmul 8622    - cmin 8917    / cdiv 9303   *ccj 11458   ~Hchil 21329    .h csm 21331    .ih csp 21332   0hc0v 21334    -h cmv 21335   _|_cort 21340   0Hc0h 21345   nullcnl 21362   ConFnccnfn 21363   LinFnclf 21364
This theorem is referenced by:  riesz4i  22473  riesz1  22475
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-inf2 7226  ax-cc 7945  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-addf 8696  ax-mulf 8697  ax-hilex 21409  ax-hfvadd 21410  ax-hvcom 21411  ax-hvass 21412  ax-hv0cl 21413  ax-hvaddid 21414  ax-hfvmul 21415  ax-hvmulid 21416  ax-hvmulass 21417  ax-hvdistr1 21418  ax-hvdistr2 21419  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494  ax-hcompl 21611
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-iin 3806  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-se 4246  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-isom 4609  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-of 5930  df-1st 5974  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-1o 6365  df-2o 6366  df-oadd 6369  df-omul 6370  df-er 6546  df-map 6660  df-pm 6661  df-ixp 6704  df-en 6750  df-dom 6751  df-sdom 6752  df-fin 6753  df-fi 7049  df-sup 7078  df-oi 7109  df-card 7456  df-acn 7459  df-cda 7678  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-5 9687  df-6 9688  df-7 9689  df-8 9690  df-9 9691  df-10 9692  df-n0 9845  df-z 9904  df-dec 10004  df-uz 10110  df-q 10196  df-rp 10234  df-xneg 10331  df-xadd 10332  df-xmul 10333  df-ioo 10538  df-ico 10540  df-icc 10541  df-fz 10661  df-fzo 10749  df-fl 10803  df-seq 10925  df-exp 10983  df-hash 11216  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-clim 11839  df-rlim 11840  df-sum 12036  df-struct 13024  df-ndx 13025  df-slot 13026  df-base 13027  df-sets 13028  df-ress 13029  df-plusg 13095  df-mulr 13096  df-starv 13097  df-sca 13098  df-vsca 13099  df-tset 13101  df-ple 13102  df-ds 13104  df-hom 13106  df-cco 13107  df-rest 13201  df-topn 13202  df-topgen 13218  df-pt 13219  df-prds 13222  df-xrs 13277  df-0g 13278  df-gsum 13279  df-qtop 13284  df-imas 13285  df-xps 13287  df-mre 13361  df-mrc 13362  df-acs 13363  df-mnd 14202  df-submnd 14251  df-mulg 14327  df-cntz 14628  df-cmn 14926  df-xmet 16205  df-met 16206  df-bl 16207  df-mopn 16208  df-cnfld 16210  df-top 16468  df-bases 16470  df-topon 16471  df-topsp 16472  df-cld 16588  df-ntr 16589  df-cls 16590  df-nei 16667  df-cn 16789  df-cnp 16790  df-lm 16791  df-haus 16875  df-tx 17089  df-hmeo 17278  df-fbas 17352  df-fg 17353  df-fil 17373  df-fm 17465  df-flim 17466  df-flf 17467  df-xms 17717  df-ms 17718  df-tms 17719  df-cfil 18513  df-cau 18514  df-cmet 18515  df-grpo 20688  df-gid 20689  df-ginv 20690  df-gdiv 20691  df-ablo 20779  df-subgo 20799  df-vc 20932  df-nv 20978  df-va 20981  df-ba 20982  df-sm 20983  df-0v 20984  df-vs 20985  df-nmcv 20986  df-ims 20987  df-dip 21104  df-ssp 21128  df-ph 21221  df-cbn 21272  df-hnorm 21378  df-hba 21379  df-hvsub 21381  df-hlim 21382  df-hcau 21383  df-sh 21616  df-ch 21631  df-oc 21661  df-ch0 21662  df-nlfn 22256  df-cnfn 22257  df-lnfn 22258
  Copyright terms: Public domain W3C validator