MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rhmco Structured version   Unicode version

Theorem rhmco 16805
Description: The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.)
Assertion
Ref Expression
rhmco  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( S RingHom  U ) )

Proof of Theorem rhmco
StepHypRef Expression
1 rhmrcl2 16796 . . 3  |-  ( F  e.  ( T RingHom  U
)  ->  U  e.  Ring )
2 rhmrcl1 16795 . . 3  |-  ( G  e.  ( S RingHom  T
)  ->  S  e.  Ring )
31, 2anim12ci 567 . 2  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( S  e.  Ring  /\  U  e.  Ring ) )
4 rhmghm 16799 . . . 4  |-  ( F  e.  ( T RingHom  U
)  ->  F  e.  ( T  GrpHom  U ) )
5 rhmghm 16799 . . . 4  |-  ( G  e.  ( S RingHom  T
)  ->  G  e.  ( S  GrpHom  T ) )
6 ghmco 15755 . . . 4  |-  ( ( F  e.  ( T 
GrpHom  U )  /\  G  e.  ( S  GrpHom  T ) )  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
74, 5, 6syl2an 477 . . 3  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( S  GrpHom  U ) )
8 eqid 2437 . . . . 5  |-  (mulGrp `  T )  =  (mulGrp `  T )
9 eqid 2437 . . . . 5  |-  (mulGrp `  U )  =  (mulGrp `  U )
108, 9rhmmhm 16798 . . . 4  |-  ( F  e.  ( T RingHom  U
)  ->  F  e.  ( (mulGrp `  T ) MndHom  (mulGrp `  U ) ) )
11 eqid 2437 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
1211, 8rhmmhm 16798 . . . 4  |-  ( G  e.  ( S RingHom  T
)  ->  G  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )
13 mhmco 15481 . . . 4  |-  ( ( F  e.  ( (mulGrp `  T ) MndHom  (mulGrp `  U ) )  /\  G  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  T ) ) )  ->  ( F  o.  G )  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
1410, 12, 13syl2an 477 . . 3  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) )
157, 14jca 532 . 2  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( ( F  o.  G )  e.  ( S  GrpHom  U )  /\  ( F  o.  G )  e.  ( (mulGrp `  S ) MndHom  (mulGrp `  U ) ) ) )
1611, 9isrhm 16797 . 2  |-  ( ( F  o.  G )  e.  ( S RingHom  U
)  <->  ( ( S  e.  Ring  /\  U  e. 
Ring )  /\  (
( F  o.  G
)  e.  ( S 
GrpHom  U )  /\  ( F  o.  G )  e.  ( (mulGrp `  S
) MndHom  (mulGrp `  U )
) ) ) )
173, 15, 16sylanbrc 664 1  |-  ( ( F  e.  ( T RingHom  U )  /\  G  e.  ( S RingHom  T )
)  ->  ( F  o.  G )  e.  ( S RingHom  U ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1756    o. ccom 4836   ` cfv 5411  (class class class)co 6086   MndHom cmhm 15454    GrpHom cghm 15733  mulGrpcmgp 16577   Ringcrg 16631   RingHom crh 16790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-rep 4396  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rmo 2717  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-pss 3337  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-tp 3875  df-op 3877  df-uni 4085  df-iun 4166  df-br 4286  df-opab 4344  df-mpt 4345  df-tr 4379  df-eprel 4624  df-id 4628  df-po 4633  df-so 4634  df-fr 4671  df-we 4673  df-ord 4714  df-on 4715  df-lim 4716  df-suc 4717  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-er 7093  df-map 7208  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-2 10372  df-ndx 14169  df-slot 14170  df-base 14171  df-sets 14172  df-plusg 14243  df-0g 14372  df-mnd 15407  df-mhm 15456  df-grp 15534  df-ghm 15734  df-mgp 16578  df-ur 16590  df-rng 16633  df-rnghom 16792
This theorem is referenced by:  evls1rhm  17726  evl1rhm  17735  chrrhm  17931
  Copyright terms: Public domain W3C validator