Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rge0scvg Structured version   Unicode version

Theorem rge0scvg 27682
Description: Implication of convergence for a nonnegative series. This could be used to shorten prmreclem6 14301 (Contributed by Thierry Arnoux, 28-Jul-2017.)
Assertion
Ref Expression
rge0scvg  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  sup ( ran  seq 1 (  +  ,  F ) ,  RR ,  <  )  e.  RR )

Proof of Theorem rge0scvg
Dummy variables  j 
k  x  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnuz 11118 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
2 1z 10895 . . . . . 6  |-  1  e.  ZZ
32a1i 11 . . . . 5  |-  ( F : NN --> ( 0 [,) +oo )  -> 
1  e.  ZZ )
4 rge0ssre 11629 . . . . . . 7  |-  ( 0 [,) +oo )  C_  RR
5 fss 5739 . . . . . . 7  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  ( 0 [,) +oo )  C_  RR )  ->  F : NN --> RR )
64, 5mpan2 671 . . . . . 6  |-  ( F : NN --> ( 0 [,) +oo )  ->  F : NN --> RR )
76ffvelrnda 6022 . . . . 5  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  j  e.  NN )  ->  ( F `  j
)  e.  RR )
81, 3, 7serfre 12105 . . . 4  |-  ( F : NN --> ( 0 [,) +oo )  ->  seq 1 (  +  ,  F ) : NN --> RR )
9 frn 5737 . . . 4  |-  (  seq 1 (  +  ,  F ) : NN --> RR  ->  ran  seq 1
(  +  ,  F
)  C_  RR )
108, 9syl 16 . . 3  |-  ( F : NN --> ( 0 [,) +oo )  ->  ran  seq 1 (  +  ,  F )  C_  RR )
1110adantr 465 . 2  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  ran  seq 1
(  +  ,  F
)  C_  RR )
12 1nn 10548 . . . . 5  |-  1  e.  NN
13 fdm 5735 . . . . 5  |-  (  seq 1 (  +  ,  F ) : NN --> RR  ->  dom  seq 1
(  +  ,  F
)  =  NN )
1412, 13syl5eleqr 2562 . . . 4  |-  (  seq 1 (  +  ,  F ) : NN --> RR  ->  1  e.  dom  seq 1 (  +  ,  F ) )
15 ne0i 3791 . . . . 5  |-  ( 1  e.  dom  seq 1
(  +  ,  F
)  ->  dom  seq 1
(  +  ,  F
)  =/=  (/) )
16 dm0rn0 5219 . . . . . 6  |-  ( dom 
seq 1 (  +  ,  F )  =  (/) 
<->  ran  seq 1 (  +  ,  F )  =  (/) )
1716necon3bii 2735 . . . . 5  |-  ( dom 
seq 1 (  +  ,  F )  =/=  (/) 
<->  ran  seq 1 (  +  ,  F )  =/=  (/) )
1815, 17sylib 196 . . . 4  |-  ( 1  e.  dom  seq 1
(  +  ,  F
)  ->  ran  seq 1
(  +  ,  F
)  =/=  (/) )
198, 14, 183syl 20 . . 3  |-  ( F : NN --> ( 0 [,) +oo )  ->  ran  seq 1 (  +  ,  F )  =/=  (/) )
2019adantr 465 . 2  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  ran  seq 1
(  +  ,  F
)  =/=  (/) )
212a1i 11 . . . . 5  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  1  e.  ZZ )
22 climdm 13343 . . . . . . 7  |-  (  seq 1 (  +  ,  F )  e.  dom  ~~>  <->  seq 1 (  +  ,  F )  ~~>  (  ~~>  `  seq 1 (  +  ,  F ) ) )
2322biimpi 194 . . . . . 6  |-  (  seq 1 (  +  ,  F )  e.  dom  ~~>  ->  seq 1 (  +  ,  F )  ~~>  (  ~~>  `  seq 1 (  +  ,  F ) ) )
2423adantl 466 . . . . 5  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  seq 1 (  +  ,  F )  ~~>  (  ~~>  `  seq 1 (  +  ,  F ) ) )
258adantr 465 . . . . . 6  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  seq 1 (  +  ,  F ) : NN --> RR )
2625ffvelrnda 6022 . . . . 5  |-  ( ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  F ) `
 k )  e.  RR )
271, 21, 24, 26climrecl 13372 . . . 4  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  (  ~~>  `  seq 1 (  +  ,  F ) )  e.  RR )
28 simpr 461 . . . . . 6  |-  ( ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  NN )  ->  k  e.  NN )
2924adantr 465 . . . . . 6  |-  ( ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  NN )  ->  seq 1 (  +  ,  F )  ~~>  (  ~~>  `  seq 1 (  +  ,  F ) ) )
30 simplll 757 . . . . . . 7  |-  ( ( ( ( F : NN
--> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  NN )  /\  j  e.  NN )  ->  F : NN --> ( 0 [,) +oo ) )
31 simpr 461 . . . . . . 7  |-  ( ( ( ( F : NN
--> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  NN )  /\  j  e.  NN )  ->  j  e.  NN )
32 ffvelrn 6020 . . . . . . . 8  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  j  e.  NN )  ->  ( F `  j
)  e.  ( 0 [,) +oo ) )
334, 32sseldi 3502 . . . . . . 7  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  j  e.  NN )  ->  ( F `  j
)  e.  RR )
3430, 31, 33syl2anc 661 . . . . . 6  |-  ( ( ( ( F : NN
--> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  NN )  /\  j  e.  NN )  ->  ( F `  j )  e.  RR )
35 elrege0 11628 . . . . . . . . . 10  |-  ( ( F `  j )  e.  ( 0 [,) +oo )  <->  ( ( F `
 j )  e.  RR  /\  0  <_ 
( F `  j
) ) )
3635simprbi 464 . . . . . . . . 9  |-  ( ( F `  j )  e.  ( 0 [,) +oo )  ->  0  <_ 
( F `  j
) )
3732, 36syl 16 . . . . . . . 8  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  j  e.  NN )  ->  0  <_  ( F `  j ) )
3837adantlr 714 . . . . . . 7  |-  ( ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  /\  j  e.  NN )  ->  0  <_  ( F `  j ) )
3938adantlr 714 . . . . . 6  |-  ( ( ( ( F : NN
--> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  NN )  /\  j  e.  NN )  ->  0  <_  ( F `  j )
)
401, 28, 29, 34, 39climserle 13451 . . . . 5  |-  ( ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  /\  k  e.  NN )  ->  (  seq 1 (  +  ,  F ) `
 k )  <_ 
(  ~~>  `  seq 1
(  +  ,  F
) ) )
4140ralrimiva 2878 . . . 4  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  A. k  e.  NN  (  seq 1 (  +  ,  F ) `  k )  <_  (  ~~>  ` 
seq 1 (  +  ,  F ) ) )
42 breq2 4451 . . . . . 6  |-  ( x  =  (  ~~>  `  seq 1 (  +  ,  F ) )  -> 
( (  seq 1
(  +  ,  F
) `  k )  <_  x  <->  (  seq 1
(  +  ,  F
) `  k )  <_  (  ~~>  `  seq 1
(  +  ,  F
) ) ) )
4342ralbidv 2903 . . . . 5  |-  ( x  =  (  ~~>  `  seq 1 (  +  ,  F ) )  -> 
( A. k  e.  NN  (  seq 1
(  +  ,  F
) `  k )  <_  x  <->  A. k  e.  NN  (  seq 1 (  +  ,  F ) `  k )  <_  (  ~~>  ` 
seq 1 (  +  ,  F ) ) ) )
4443rspcev 3214 . . . 4  |-  ( ( (  ~~>  `  seq 1
(  +  ,  F
) )  e.  RR  /\ 
A. k  e.  NN  (  seq 1 (  +  ,  F ) `  k )  <_  (  ~~>  ` 
seq 1 (  +  ,  F ) ) )  ->  E. x  e.  RR  A. k  e.  NN  (  seq 1
(  +  ,  F
) `  k )  <_  x )
4527, 41, 44syl2anc 661 . . 3  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  E. x  e.  RR  A. k  e.  NN  (  seq 1 (  +  ,  F ) `  k
)  <_  x )
46 ffn 5731 . . . . . 6  |-  (  seq 1 (  +  ,  F ) : NN --> RR  ->  seq 1 (  +  ,  F )  Fn  NN )
47 breq1 4450 . . . . . . 7  |-  ( z  =  (  seq 1
(  +  ,  F
) `  k )  ->  ( z  <_  x  <->  (  seq 1 (  +  ,  F ) `  k )  <_  x
) )
4847ralrn 6025 . . . . . 6  |-  (  seq 1 (  +  ,  F )  Fn  NN  ->  ( A. z  e. 
ran  seq 1 (  +  ,  F ) z  <_  x  <->  A. k  e.  NN  (  seq 1
(  +  ,  F
) `  k )  <_  x ) )
498, 46, 483syl 20 . . . . 5  |-  ( F : NN --> ( 0 [,) +oo )  -> 
( A. z  e. 
ran  seq 1 (  +  ,  F ) z  <_  x  <->  A. k  e.  NN  (  seq 1
(  +  ,  F
) `  k )  <_  x ) )
5049rexbidv 2973 . . . 4  |-  ( F : NN --> ( 0 [,) +oo )  -> 
( E. x  e.  RR  A. z  e. 
ran  seq 1 (  +  ,  F ) z  <_  x  <->  E. x  e.  RR  A. k  e.  NN  (  seq 1
(  +  ,  F
) `  k )  <_  x ) )
5150adantr 465 . . 3  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  ( E. x  e.  RR  A. z  e. 
ran  seq 1 (  +  ,  F ) z  <_  x  <->  E. x  e.  RR  A. k  e.  NN  (  seq 1
(  +  ,  F
) `  k )  <_  x ) )
5245, 51mpbird 232 . 2  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  E. x  e.  RR  A. z  e.  ran  seq 1 (  +  ,  F ) z  <_  x )
53 suprcl 10504 . 2  |-  ( ( ran  seq 1 (  +  ,  F ) 
C_  RR  /\  ran  seq 1 (  +  ,  F )  =/=  (/)  /\  E. x  e.  RR  A. z  e.  ran  seq 1 (  +  ,  F ) z  <_  x )  ->  sup ( ran  seq 1 (  +  ,  F ) ,  RR ,  <  )  e.  RR )
5411, 20, 52, 53syl3anc 1228 1  |-  ( ( F : NN --> ( 0 [,) +oo )  /\  seq 1 (  +  ,  F )  e.  dom  ~~>  )  ->  sup ( ran  seq 1 (  +  ,  F ) ,  RR ,  <  )  e.  RR )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   E.wrex 2815    C_ wss 3476   (/)c0 3785   class class class wbr 4447   dom cdm 4999   ran crn 5000    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6285   supcsup 7901   RRcr 9492   0cc0 9493   1c1 9494    + caddc 9496   +oocpnf 9626    < clt 9629    <_ cle 9630   NNcn 10537   ZZcz 10865   [,)cico 11532    seqcseq 12076    ~~> cli 13273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6577  ax-cnex 9549  ax-resscn 9550  ax-1cn 9551  ax-icn 9552  ax-addcl 9553  ax-addrcl 9554  ax-mulcl 9555  ax-mulrcl 9556  ax-mulcom 9557  ax-addass 9558  ax-mulass 9559  ax-distr 9560  ax-i2m1 9561  ax-1ne0 9562  ax-1rid 9563  ax-rnegex 9564  ax-rrecex 9565  ax-cnre 9566  ax-pre-lttri 9567  ax-pre-lttrn 9568  ax-pre-ltadd 9569  ax-pre-mulgt0 9570  ax-pre-sup 9571
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6246  df-ov 6288  df-oprab 6289  df-mpt2 6290  df-om 6686  df-1st 6785  df-2nd 6786  df-recs 7043  df-rdg 7077  df-er 7312  df-pm 7424  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-pnf 9631  df-mnf 9632  df-xr 9633  df-ltxr 9634  df-le 9635  df-sub 9808  df-neg 9809  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11084  df-rp 11222  df-ico 11536  df-fz 11674  df-fl 11898  df-seq 12077  df-exp 12136  df-cj 12898  df-re 12899  df-im 12900  df-sqrt 13034  df-abs 13035  df-clim 13277  df-rlim 13278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator