Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre3 Structured version   Unicode version

Theorem rfcnpre3 31014
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater or equal than a given real B is a closed set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre3.2  |-  F/_ t F
rfcnpre3.3  |-  K  =  ( topGen `  ran  (,) )
rfcnpre3.4  |-  T  = 
U. J
rfcnpre3.5  |-  A  =  { t  e.  T  |  B  <_  ( F `
 t ) }
rfcnpre3.6  |-  ( ph  ->  B  e.  RR )
rfcnpre3.8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
Assertion
Ref Expression
rfcnpre3  |-  ( ph  ->  A  e.  ( Clsd `  J ) )
Distinct variable groups:    t, B    t, T
Allowed substitution hints:    ph( t)    A( t)    F( t)    J( t)    K( t)

Proof of Theorem rfcnpre3
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 rfcnpre3.3 . . . . . . . 8  |-  K  =  ( topGen `  ran  (,) )
2 rfcnpre3.4 . . . . . . . 8  |-  T  = 
U. J
3 eqid 2467 . . . . . . . 8  |-  ( J  Cn  K )  =  ( J  Cn  K
)
4 rfcnpre3.8 . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
51, 2, 3, 4fcnre 31006 . . . . . . 7  |-  ( ph  ->  F : T --> RR )
6 ffn 5731 . . . . . . 7  |-  ( F : T --> RR  ->  F  Fn  T )
7 elpreima 6001 . . . . . . 7  |-  ( F  Fn  T  ->  (
s  e.  ( `' F " ( B [,) +oo ) )  <-> 
( s  e.  T  /\  ( F `  s
)  e.  ( B [,) +oo ) ) ) )
85, 6, 73syl 20 . . . . . 6  |-  ( ph  ->  ( s  e.  ( `' F " ( B [,) +oo ) )  <-> 
( s  e.  T  /\  ( F `  s
)  e.  ( B [,) +oo ) ) ) )
9 rfcnpre3.6 . . . . . . . . . . 11  |-  ( ph  ->  B  e.  RR )
109rexrd 9643 . . . . . . . . . 10  |-  ( ph  ->  B  e.  RR* )
1110adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  T )  ->  B  e.  RR* )
12 pnfxr 11321 . . . . . . . . 9  |- +oo  e.  RR*
13 elico1 11572 . . . . . . . . 9  |-  ( ( B  e.  RR*  /\ +oo  e.  RR* )  ->  (
( F `  s
)  e.  ( B [,) +oo )  <->  ( ( F `  s )  e.  RR*  /\  B  <_ 
( F `  s
)  /\  ( F `  s )  < +oo ) ) )
1411, 12, 13sylancl 662 . . . . . . . 8  |-  ( (
ph  /\  s  e.  T )  ->  (
( F `  s
)  e.  ( B [,) +oo )  <->  ( ( F `  s )  e.  RR*  /\  B  <_ 
( F `  s
)  /\  ( F `  s )  < +oo ) ) )
15 simpr2 1003 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  T )  /\  (
( F `  s
)  e.  RR*  /\  B  <_  ( F `  s
)  /\  ( F `  s )  < +oo ) )  ->  B  <_  ( F `  s
) )
165fnvinran 30995 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  T )  ->  ( F `  s )  e.  RR )
1716rexrd 9643 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  T )  ->  ( F `  s )  e.  RR* )
1817adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  T )  /\  B  <_  ( F `  s
) )  ->  ( F `  s )  e.  RR* )
19 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  T )  /\  B  <_  ( F `  s
) )  ->  B  <_  ( F `  s
) )
2016adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  s  e.  T )  /\  B  <_  ( F `  s
) )  ->  ( F `  s )  e.  RR )
21 ltpnf 11331 . . . . . . . . . . 11  |-  ( ( F `  s )  e.  RR  ->  ( F `  s )  < +oo )
2220, 21syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  s  e.  T )  /\  B  <_  ( F `  s
) )  ->  ( F `  s )  < +oo )
2318, 19, 223jca 1176 . . . . . . . . 9  |-  ( ( ( ph  /\  s  e.  T )  /\  B  <_  ( F `  s
) )  ->  (
( F `  s
)  e.  RR*  /\  B  <_  ( F `  s
)  /\  ( F `  s )  < +oo ) )
2415, 23impbida 830 . . . . . . . 8  |-  ( (
ph  /\  s  e.  T )  ->  (
( ( F `  s )  e.  RR*  /\  B  <_  ( F `  s )  /\  ( F `  s )  < +oo )  <->  B  <_  ( F `  s ) ) )
2514, 24bitrd 253 . . . . . . 7  |-  ( (
ph  /\  s  e.  T )  ->  (
( F `  s
)  e.  ( B [,) +oo )  <->  B  <_  ( F `  s ) ) )
2625pm5.32da 641 . . . . . 6  |-  ( ph  ->  ( ( s  e.  T  /\  ( F `
 s )  e.  ( B [,) +oo ) )  <->  ( s  e.  T  /\  B  <_ 
( F `  s
) ) ) )
278, 26bitrd 253 . . . . 5  |-  ( ph  ->  ( s  e.  ( `' F " ( B [,) +oo ) )  <-> 
( s  e.  T  /\  B  <_  ( F `
 s ) ) ) )
28 nfcv 2629 . . . . . 6  |-  F/_ t
s
29 nfcv 2629 . . . . . 6  |-  F/_ t T
30 nfcv 2629 . . . . . . 7  |-  F/_ t B
31 nfcv 2629 . . . . . . 7  |-  F/_ t  <_
32 rfcnpre3.2 . . . . . . . 8  |-  F/_ t F
3332, 28nffv 5873 . . . . . . 7  |-  F/_ t
( F `  s
)
3430, 31, 33nfbr 4491 . . . . . 6  |-  F/ t  B  <_  ( F `  s )
35 fveq2 5866 . . . . . . 7  |-  ( t  =  s  ->  ( F `  t )  =  ( F `  s ) )
3635breq2d 4459 . . . . . 6  |-  ( t  =  s  ->  ( B  <_  ( F `  t )  <->  B  <_  ( F `  s ) ) )
3728, 29, 34, 36elrabf 3259 . . . . 5  |-  ( s  e.  { t  e.  T  |  B  <_ 
( F `  t
) }  <->  ( s  e.  T  /\  B  <_ 
( F `  s
) ) )
3827, 37syl6bbr 263 . . . 4  |-  ( ph  ->  ( s  e.  ( `' F " ( B [,) +oo ) )  <-> 
s  e.  { t  e.  T  |  B  <_  ( F `  t
) } ) )
3938eqrdv 2464 . . 3  |-  ( ph  ->  ( `' F "
( B [,) +oo ) )  =  {
t  e.  T  |  B  <_  ( F `  t ) } )
40 rfcnpre3.5 . . 3  |-  A  =  { t  e.  T  |  B  <_  ( F `
 t ) }
4139, 40syl6eqr 2526 . 2  |-  ( ph  ->  ( `' F "
( B [,) +oo ) )  =  A )
42 icopnfcld 21038 . . . . 5  |-  ( B  e.  RR  ->  ( B [,) +oo )  e.  ( Clsd `  ( topGen `
 ran  (,) )
) )
439, 42syl 16 . . . 4  |-  ( ph  ->  ( B [,) +oo )  e.  ( Clsd `  ( topGen `  ran  (,) )
) )
441fveq2i 5869 . . . 4  |-  ( Clsd `  K )  =  (
Clsd `  ( topGen ` 
ran  (,) ) )
4543, 44syl6eleqr 2566 . . 3  |-  ( ph  ->  ( B [,) +oo )  e.  ( Clsd `  K ) )
46 cnclima 19563 . . 3  |-  ( ( F  e.  ( J  Cn  K )  /\  ( B [,) +oo )  e.  ( Clsd `  K
) )  ->  ( `' F " ( B [,) +oo ) )  e.  ( Clsd `  J
) )
474, 45, 46syl2anc 661 . 2  |-  ( ph  ->  ( `' F "
( B [,) +oo ) )  e.  (
Clsd `  J )
)
4841, 47eqeltrrd 2556 1  |-  ( ph  ->  A  e.  ( Clsd `  J ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   F/_wnfc 2615   {crab 2818   U.cuni 4245   class class class wbr 4447   `'ccnv 4998   ran crn 5000   "cima 5002    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   RRcr 9491   +oocpnf 9625   RR*cxr 9627    < clt 9628    <_ cle 9629   (,)cioo 11529   [,)cico 11531   topGenctg 14693   Clsdccld 19311    Cn ccn 19519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569  ax-pre-sup 9570
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-recs 7042  df-rdg 7076  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-sup 7901  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-div 10207  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-q 11183  df-ioo 11533  df-ico 11535  df-topgen 14699  df-top 19194  df-bases 19196  df-topon 19197  df-cld 19314  df-cn 19522
This theorem is referenced by:  stoweidlem59  31387
  Copyright terms: Public domain W3C validator