Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnnnub Structured version   Unicode version

Theorem rfcnnnub 31651
Description: Given a real continuous function  F defined on a compact topological space, there is always a positive integer that is a strict upper bound of its range. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnnnub.1  |-  F/_ t F
rfcnnnub.2  |-  F/ t
ph
rfcnnnub.3  |-  K  =  ( topGen `  ran  (,) )
rfcnnnub.4  |-  ( ph  ->  J  e.  Comp )
rfcnnnub.5  |-  T  = 
U. J
rfcnnnub.6  |-  ( ph  ->  T  =/=  (/) )
rfcnnnub.7  |-  C  =  ( J  Cn  K
)
rfcnnnub.8  |-  ( ph  ->  F  e.  C )
Assertion
Ref Expression
rfcnnnub  |-  ( ph  ->  E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n )
Distinct variable groups:    t, n, T    n, F    t, J    t, K
Allowed substitution hints:    ph( t, n)    C( t, n)    F( t)    J( n)    K( n)

Proof of Theorem rfcnnnub
Dummy variable  s is distinct from all other variables.
StepHypRef Expression
1 nfcv 2616 . . . . . . . 8  |-  F/_ s F
2 rfcnnnub.1 . . . . . . . 8  |-  F/_ t F
3 nfcv 2616 . . . . . . . 8  |-  F/_ s T
4 nfcv 2616 . . . . . . . 8  |-  F/_ t T
5 nfv 1712 . . . . . . . 8  |-  F/ s
ph
6 rfcnnnub.2 . . . . . . . 8  |-  F/ t
ph
7 rfcnnnub.5 . . . . . . . 8  |-  T  = 
U. J
8 rfcnnnub.3 . . . . . . . 8  |-  K  =  ( topGen `  ran  (,) )
9 rfcnnnub.4 . . . . . . . 8  |-  ( ph  ->  J  e.  Comp )
10 rfcnnnub.8 . . . . . . . . 9  |-  ( ph  ->  F  e.  C )
11 rfcnnnub.7 . . . . . . . . 9  |-  C  =  ( J  Cn  K
)
1210, 11syl6eleq 2552 . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
13 rfcnnnub.6 . . . . . . . 8  |-  ( ph  ->  T  =/=  (/) )
141, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13evthf 31642 . . . . . . 7  |-  ( ph  ->  E. s  e.  T  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )
15 df-rex 2810 . . . . . . 7  |-  ( E. s  e.  T  A. t  e.  T  ( F `  t )  <_  ( F `  s
)  <->  E. s ( s  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
) ) )
1614, 15sylib 196 . . . . . 6  |-  ( ph  ->  E. s ( s  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
) ) )
178, 7, 11, 10fcnre 31640 . . . . . . . . . 10  |-  ( ph  ->  F : T --> RR )
1817ffvelrnda 6007 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  T )  ->  ( F `  s )  e.  RR )
1918ex 432 . . . . . . . 8  |-  ( ph  ->  ( s  e.  T  ->  ( F `  s
)  e.  RR ) )
2019anim1d 562 . . . . . . 7  |-  ( ph  ->  ( ( s  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
)  ->  ( ( F `  s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
) ) )
2120eximdv 1715 . . . . . 6  |-  ( ph  ->  ( E. s ( s  e.  T  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )  ->  E. s ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
) ) )
2216, 21mpd 15 . . . . 5  |-  ( ph  ->  E. s ( ( F `  s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
) ) )
2317ffvelrnda 6007 . . . . . . 7  |-  ( (
ph  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
2423ex 432 . . . . . 6  |-  ( ph  ->  ( t  e.  T  ->  ( F `  t
)  e.  RR ) )
256, 24ralrimi 2854 . . . . 5  |-  ( ph  ->  A. t  e.  T  ( F `  t )  e.  RR )
26 19.41v 1776 . . . . 5  |-  ( E. s ( ( ( F `  s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
) )  /\  A. t  e.  T  ( F `  t )  e.  RR )  <->  ( E. s ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
)  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
2722, 25, 26sylanbrc 662 . . . 4  |-  ( ph  ->  E. s ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
28 df-3an 973 . . . . 5  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  <->  ( (
( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
2928exbii 1672 . . . 4  |-  ( E. s ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  <->  E. s
( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )
)  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
3027, 29sylibr 212 . . 3  |-  ( ph  ->  E. s ( ( F `  s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s
)  /\  A. t  e.  T  ( F `  t )  e.  RR ) )
31 nfcv 2616 . . . . . . . . . 10  |-  F/_ t
s
322, 31nffv 5855 . . . . . . . . 9  |-  F/_ t
( F `  s
)
3332nfel1 2632 . . . . . . . 8  |-  F/ t ( F `  s
)  e.  RR
34 nfra1 2835 . . . . . . . 8  |-  F/ t A. t  e.  T  ( F `  t )  <_  ( F `  s )
35 nfra1 2835 . . . . . . . 8  |-  F/ t A. t  e.  T  ( F `  t )  e.  RR
3633, 34, 35nf3an 1935 . . . . . . 7  |-  F/ t ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )
37 nfv 1712 . . . . . . . 8  |-  F/ t  n  e.  NN
38 nfcv 2616 . . . . . . . . 9  |-  F/_ t  <
39 nfcv 2616 . . . . . . . . 9  |-  F/_ t
n
4032, 38, 39nfbr 4483 . . . . . . . 8  |-  F/ t ( F `  s
)  <  n
4137, 40nfan 1933 . . . . . . 7  |-  F/ t ( n  e.  NN  /\  ( F `  s
)  <  n )
4236, 41nfan 1933 . . . . . 6  |-  F/ t ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)
43 simpll3 1035 . . . . . . . . 9  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  A. t  e.  T  ( F `  t )  e.  RR )
44 simpr 459 . . . . . . . . 9  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  t  e.  T )
45 rsp 2820 . . . . . . . . 9  |-  ( A. t  e.  T  ( F `  t )  e.  RR  ->  ( t  e.  T  ->  ( F `
 t )  e.  RR ) )
4643, 44, 45sylc 60 . . . . . . . 8  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  t )  e.  RR )
47 simpll1 1033 . . . . . . . 8  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  s )  e.  RR )
48 simplrl 759 . . . . . . . . 9  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  n  e.  NN )
4948nnred 10546 . . . . . . . 8  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  n  e.  RR )
50 simpl2 998 . . . . . . . . 9  |-  ( ( ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  (
n  e.  NN  /\  ( F `  s )  <  n ) )  ->  A. t  e.  T  ( F `  t )  <_  ( F `  s ) )
5150r19.21bi 2823 . . . . . . . 8  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  t )  <_  ( F `  s
) )
52 simplrr 760 . . . . . . . 8  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  s )  <  n )
5346, 47, 49, 51, 52lelttrd 9729 . . . . . . 7  |-  ( ( ( ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  ( n  e.  NN  /\  ( F `  s
)  <  n )
)  /\  t  e.  T )  ->  ( F `  t )  <  n )
5453ex 432 . . . . . 6  |-  ( ( ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  (
n  e.  NN  /\  ( F `  s )  <  n ) )  ->  ( t  e.  T  ->  ( F `  t )  <  n
) )
5542, 54ralrimi 2854 . . . . 5  |-  ( ( ( ( F `  s )  e.  RR  /\ 
A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  /\  (
n  e.  NN  /\  ( F `  s )  <  n ) )  ->  A. t  e.  T  ( F `  t )  <  n )
56 arch 10788 . . . . . 6  |-  ( ( F `  s )  e.  RR  ->  E. n  e.  NN  ( F `  s )  <  n
)
57563ad2ant1 1015 . . . . 5  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  E. n  e.  NN  ( F `  s )  <  n
)
5855, 57reximddv 2930 . . . 4  |-  ( ( ( F `  s
)  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n
)
5958eximi 1661 . . 3  |-  ( E. s ( ( F `
 s )  e.  RR  /\  A. t  e.  T  ( F `  t )  <_  ( F `  s )  /\  A. t  e.  T  ( F `  t )  e.  RR )  ->  E. s E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n
)
6030, 59syl 16 . 2  |-  ( ph  ->  E. s E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n
)
61 19.9v 1759 . 2  |-  ( E. s E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n  <->  E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n )
6260, 61sylib 196 1  |-  ( ph  ->  E. n  e.  NN  A. t  e.  T  ( F `  t )  <  n )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398   E.wex 1617   F/wnf 1621    e. wcel 1823   F/_wnfc 2602    =/= wne 2649   A.wral 2804   E.wrex 2805   (/)c0 3783   U.cuni 4235   class class class wbr 4439   ran crn 4989   ` cfv 5570  (class class class)co 6270   RRcr 9480    < clt 9617    <_ cle 9618   NNcn 10531   (,)cioo 11532   topGenctg 14927    Cn ccn 19892   Compccmp 20053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-mulf 9561
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-2o 7123  df-oadd 7126  df-er 7303  df-map 7414  df-ixp 7463  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-cda 8539  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10977  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ioo 11536  df-icc 11539  df-fz 11676  df-fzo 11800  df-seq 12090  df-exp 12149  df-hash 12388  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-struct 14718  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-starv 14799  df-sca 14800  df-vsca 14801  df-ip 14802  df-tset 14803  df-ple 14804  df-ds 14806  df-unif 14807  df-hom 14808  df-cco 14809  df-rest 14912  df-topn 14913  df-0g 14931  df-gsum 14932  df-topgen 14933  df-pt 14934  df-prds 14937  df-xrs 14991  df-qtop 14996  df-imas 14997  df-xps 14999  df-mre 15075  df-mrc 15076  df-acs 15078  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-mulg 16259  df-cntz 16554  df-cmn 16999  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-cnfld 18616  df-top 19566  df-bases 19568  df-topon 19569  df-topsp 19570  df-cn 19895  df-cnp 19896  df-cmp 20054  df-tx 20229  df-hmeo 20422  df-xms 20989  df-ms 20990  df-tms 20991
This theorem is referenced by:  stoweidlem60  32081
  Copyright terms: Public domain W3C validator