MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxfr Structured version   Visualization version   Unicode version

Theorem rexxfr 4619
Description: Transfer existence from a variable  x to another variable  y contained in expression  A. (Contributed by NM, 10-Jun-2005.) (Revised by Mario Carneiro, 15-Aug-2014.)
Hypotheses
Ref Expression
ralxfr.1  |-  ( y  e.  C  ->  A  e.  B )
ralxfr.2  |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )
ralxfr.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexxfr  |-  ( E. x  e.  B  ph  <->  E. y  e.  C  ps )
Distinct variable groups:    ps, x    ph, y    x, A    x, y, B    x, C
Allowed substitution hints:    ph( x)    ps( y)    A( y)    C( y)

Proof of Theorem rexxfr
StepHypRef Expression
1 dfrex2 2837 . 2  |-  ( E. x  e.  B  ph  <->  -. 
A. x  e.  B  -.  ph )
2 dfrex2 2837 . . 3  |-  ( E. y  e.  C  ps  <->  -. 
A. y  e.  C  -.  ps )
3 ralxfr.1 . . . 4  |-  ( y  e.  C  ->  A  e.  B )
4 ralxfr.2 . . . 4  |-  ( x  e.  B  ->  E. y  e.  C  x  =  A )
5 ralxfr.3 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
65notbid 296 . . . 4  |-  ( x  =  A  ->  ( -.  ph  <->  -.  ps )
)
73, 4, 6ralxfr 4617 . . 3  |-  ( A. x  e.  B  -.  ph  <->  A. y  e.  C  -.  ps )
82, 7xchbinxr 313 . 2  |-  ( E. y  e.  C  ps  <->  -. 
A. x  e.  B  -.  ph )
91, 8bitr4i 256 1  |-  ( E. x  e.  B  ph  <->  E. y  e.  C  ps )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    = wceq 1443    e. wcel 1886   A.wral 2736   E.wrex 2737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430
This theorem depends on definitions:  df-bi 189  df-an 373  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ral 2741  df-rex 2742  df-v 3046
This theorem is referenced by:  infm3  10565  reeff1o  23395  moxfr  35528
  Copyright terms: Public domain W3C validator