MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuzre Structured version   Unicode version

Theorem rexuzre 13352
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexuzre  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) ) )
Distinct variable groups:    j, M    ph, j    j, k, Z   
k, M
Allowed substitution hint:    ph( k)

Proof of Theorem rexuzre
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eluzelre 11113 . . . . . 6  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  RR )
2 rexuz3.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
31, 2eleq2s 2518 . . . . 5  |-  ( j  e.  Z  ->  j  e.  RR )
43adantr 466 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  j  e.  RR )
5 eluzelz 11112 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
65, 2eleq2s 2518 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  j  e.  ZZ )
7 eluzelz 11112 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
87, 2eleq2s 2518 . . . . . . . . . . 11  |-  ( k  e.  Z  ->  k  e.  ZZ )
9 eluz 11116 . . . . . . . . . . 11  |-  ( ( j  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
106, 8, 9syl2an 479 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
1110biimprd 226 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  <_  k  ->  k  e.  ( ZZ>= `  j ) ) )
1211expimpd 606 . . . . . . . 8  |-  ( j  e.  Z  ->  (
( k  e.  Z  /\  j  <_  k )  ->  k  e.  (
ZZ>= `  j ) ) )
1312imim1d 78 . . . . . . 7  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  ->  ph )  ->  ( ( k  e.  Z  /\  j  <_  k )  ->  ph ) ) )
1413exp4a 609 . . . . . 6  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  ->  ph )  ->  ( k  e.  Z  ->  (
j  <_  k  ->  ph ) ) ) )
1514ralimdv2 2766 . . . . 5  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  A. k  e.  Z  ( j  <_  k  ->  ph ) ) )
1615imp 430 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  A. k  e.  Z  ( j  <_  k  ->  ph ) )
174, 16jca 534 . . 3  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( j  e.  RR  /\ 
A. k  e.  Z  ( j  <_  k  ->  ph ) ) )
1817reximi2 2825 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) )
19 simpl 458 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  M  e.  ZZ )
20 flcl 11974 . . . . . . . . . 10  |-  ( j  e.  RR  ->  ( |_ `  j )  e.  ZZ )
2120adantl 467 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( |_ `  j
)  e.  ZZ )
2221peano2zd 10987 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  e.  ZZ )
2322, 19ifcld 3890 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  ZZ )
24 zre 10885 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
25 reflcl 11975 . . . . . . . . 9  |-  ( j  e.  RR  ->  ( |_ `  j )  e.  RR )
26 peano2re 9750 . . . . . . . . 9  |-  ( ( |_ `  j )  e.  RR  ->  (
( |_ `  j
)  +  1 )  e.  RR )
2725, 26syl 17 . . . . . . . 8  |-  ( j  e.  RR  ->  (
( |_ `  j
)  +  1 )  e.  RR )
28 max1 11424 . . . . . . . 8  |-  ( ( M  e.  RR  /\  ( ( |_ `  j )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )
2924, 27, 28syl2an 479 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
30 eluz2 11109 . . . . . . 7  |-  ( if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
) ) )
3119, 23, 29, 30syl3anbrc 1189 . . . . . 6  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  (
ZZ>= `  M ) )
3231, 2syl6eleqr 2511 . . . . 5  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  Z
)
33 impexp 447 . . . . . . 7  |-  ( ( ( k  e.  Z  /\  j  <_  k )  ->  ph )  <->  ( k  e.  Z  ->  ( j  <_  k  ->  ph )
) )
34 uzss 11123 . . . . . . . . . . . . 13  |-  ( if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  ->  ( ZZ>=
`  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  ( ZZ>= `  M
) )
3531, 34syl 17 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  ( ZZ>= `  M
) )
3635, 2syl6sseqr 3447 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  Z )
3736sselda 3400 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  k  e.  Z )
38 simplr 760 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  e.  RR )
3923adantr 466 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  ZZ )
4039zred 10984 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  RR )
41 eluzelre 11113 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )  ->  k  e.  RR )
4241adantl 467 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  k  e.  RR )
43 simpr 462 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  e.  RR )
4427adantl 467 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  e.  RR )
4523zred 10984 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  RR )
46 fllep1 11980 . . . . . . . . . . . . . 14  |-  ( j  e.  RR  ->  j  <_  ( ( |_ `  j )  +  1 ) )
4746adantl 467 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  <_  ( ( |_ `  j )  +  1 ) )
48 max2 11426 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  ( ( |_ `  j )  +  1 )  e.  RR )  ->  ( ( |_
`  j )  +  1 )  <_  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )
4924, 27, 48syl2an 479 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
5043, 44, 45, 47, 49letrd 9736 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
5150adantr 466 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  <_  if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
) )
52 eluzle 11115 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  <_ 
k )
5352adantl 467 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  <_ 
k )
5438, 40, 42, 51, 53letrd 9736 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  <_  k )
5537, 54jca 534 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  ( k  e.  Z  /\  j  <_  k ) )
5655ex 435 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ( k  e.  Z  /\  j  <_ 
k ) ) )
5756imim1d 78 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( ( k  e.  Z  /\  j  <_  k )  ->  ph )  ->  ( k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ph ) ) )
5833, 57syl5bir 221 . . . . . 6  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( k  e.  Z  ->  ( j  <_  k  ->  ph ) )  ->  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ph ) ) )
5958ralimdv2 2766 . . . . 5  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( A. k  e.  Z  ( j  <_ 
k  ->  ph )  ->  A. k  e.  ( ZZ>=
`  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph ) )
60 fveq2 5818 . . . . . . 7  |-  ( m  =  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  -> 
( ZZ>= `  m )  =  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) ) )
6160raleqdv 2964 . . . . . 6  |-  ( m  =  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  -> 
( A. k  e.  ( ZZ>= `  m ) ph 
<-> 
A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph ) )
6261rspcev 3118 . . . . 5  |-  ( ( if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  Z  /\  A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph )
6332, 59, 62syl6an 547 . . . 4  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( A. k  e.  Z  ( j  <_ 
k  ->  ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>=
`  m ) ph ) )
6463rexlimdva 2850 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  RR  A. k  e.  Z  ( j  <_  k  ->  ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph ) )
65 fveq2 5818 . . . . 5  |-  ( m  =  j  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  j )
)
6665raleqdv 2964 . . . 4  |-  ( m  =  j  ->  ( A. k  e.  ( ZZ>=
`  m ) ph  <->  A. k  e.  ( ZZ>= `  j ) ph )
)
6766cbvrexv 2991 . . 3  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph )
6864, 67syl6ib 229 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  RR  A. k  e.  Z  ( j  <_  k  ->  ph )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph ) )
6918, 68impbid2 207 1  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2708   E.wrex 2709    C_ wss 3372   ifcif 3847   class class class wbr 4359   ` cfv 5537  (class class class)co 6242   RRcr 9482   1c1 9484    + caddc 9486    <_ cle 9620   ZZcz 10881   ZZ>=cuz 11103   |_cfl 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2402  ax-sep 4482  ax-nul 4491  ax-pow 4538  ax-pr 4596  ax-un 6534  ax-cnex 9539  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560  ax-pre-sup 9561
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2274  df-mo 2275  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2552  df-ne 2595  df-nel 2596  df-ral 2713  df-rex 2714  df-reu 2715  df-rmo 2716  df-rab 2717  df-v 3018  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3698  df-if 3848  df-pw 3919  df-sn 3935  df-pr 3937  df-tp 3939  df-op 3941  df-uni 4156  df-iun 4237  df-br 4360  df-opab 4419  df-mpt 4420  df-tr 4455  df-eprel 4700  df-id 4704  df-po 4710  df-so 4711  df-fr 4748  df-we 4750  df-xp 4795  df-rel 4796  df-cnv 4797  df-co 4798  df-dm 4799  df-rn 4800  df-res 4801  df-ima 4802  df-pred 5335  df-ord 5381  df-on 5382  df-lim 5383  df-suc 5384  df-iota 5501  df-fun 5539  df-fn 5540  df-f 5541  df-f1 5542  df-fo 5543  df-f1o 5544  df-fv 5545  df-riota 6204  df-ov 6245  df-oprab 6246  df-mpt2 6247  df-om 6644  df-wrecs 6976  df-recs 7038  df-rdg 7076  df-er 7311  df-en 7518  df-dom 7519  df-sdom 7520  df-sup 7902  df-inf 7903  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9806  df-neg 9807  df-nn 10554  df-n0 10814  df-z 10882  df-uz 11104  df-fl 11971
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator