MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuzre Unicode version

Theorem rexuzre 12111
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexuzre  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) ) )
Distinct variable groups:    j, M    ph, j    j, k, Z   
k, M
Allowed substitution hint:    ph( k)

Proof of Theorem rexuzre
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eluzelre 10453 . . . . . 6  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  RR )
2 rexuz3.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
31, 2eleq2s 2496 . . . . 5  |-  ( j  e.  Z  ->  j  e.  RR )
43adantr 452 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  j  e.  RR )
5 eluzelz 10452 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
65, 2eleq2s 2496 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  j  e.  ZZ )
7 eluzelz 10452 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
87, 2eleq2s 2496 . . . . . . . . . . 11  |-  ( k  e.  Z  ->  k  e.  ZZ )
9 eluz 10455 . . . . . . . . . . 11  |-  ( ( j  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
106, 8, 9syl2an 464 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
1110biimprd 215 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  <_  k  ->  k  e.  ( ZZ>= `  j ) ) )
1211expimpd 587 . . . . . . . 8  |-  ( j  e.  Z  ->  (
( k  e.  Z  /\  j  <_  k )  ->  k  e.  (
ZZ>= `  j ) ) )
1312imim1d 71 . . . . . . 7  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  ->  ph )  ->  ( ( k  e.  Z  /\  j  <_  k )  ->  ph ) ) )
1413exp4a 590 . . . . . 6  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  ->  ph )  ->  ( k  e.  Z  ->  (
j  <_  k  ->  ph ) ) ) )
1514ralimdv2 2746 . . . . 5  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  A. k  e.  Z  ( j  <_  k  ->  ph ) ) )
1615imp 419 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  A. k  e.  Z  ( j  <_  k  ->  ph ) )
174, 16jca 519 . . 3  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( j  e.  RR  /\ 
A. k  e.  Z  ( j  <_  k  ->  ph ) ) )
1817reximi2 2772 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) )
19 simpl 444 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  M  e.  ZZ )
20 flcl 11159 . . . . . . . . . 10  |-  ( j  e.  RR  ->  ( |_ `  j )  e.  ZZ )
2120adantl 453 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( |_ `  j
)  e.  ZZ )
2221peano2zd 10334 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  e.  ZZ )
23 ifcl 3735 . . . . . . . 8  |-  ( ( ( ( |_ `  j )  +  1 )  e.  ZZ  /\  M  e.  ZZ )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  ZZ )
2422, 19, 23syl2anc 643 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  ZZ )
25 zre 10242 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
26 reflcl 11160 . . . . . . . . 9  |-  ( j  e.  RR  ->  ( |_ `  j )  e.  RR )
27 peano2re 9195 . . . . . . . . 9  |-  ( ( |_ `  j )  e.  RR  ->  (
( |_ `  j
)  +  1 )  e.  RR )
2826, 27syl 16 . . . . . . . 8  |-  ( j  e.  RR  ->  (
( |_ `  j
)  +  1 )  e.  RR )
29 max1 10729 . . . . . . . 8  |-  ( ( M  e.  RR  /\  ( ( |_ `  j )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )
3025, 28, 29syl2an 464 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
31 eluz2 10450 . . . . . . 7  |-  ( if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
) ) )
3219, 24, 30, 31syl3anbrc 1138 . . . . . 6  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  (
ZZ>= `  M ) )
3332, 2syl6eleqr 2495 . . . . 5  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  Z
)
34 impexp 434 . . . . . . 7  |-  ( ( ( k  e.  Z  /\  j  <_  k )  ->  ph )  <->  ( k  e.  Z  ->  ( j  <_  k  ->  ph )
) )
35 uzss 10462 . . . . . . . . . . . . 13  |-  ( if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  ->  ( ZZ>=
`  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  ( ZZ>= `  M
) )
3632, 35syl 16 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  ( ZZ>= `  M
) )
3736, 2syl6sseqr 3355 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  Z )
3837sselda 3308 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  k  e.  Z )
39 simplr 732 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  e.  RR )
4024adantr 452 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  ZZ )
4140zred 10331 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  RR )
42 eluzelre 10453 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )  ->  k  e.  RR )
4342adantl 453 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  k  e.  RR )
44 simpr 448 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  e.  RR )
4528adantl 453 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  e.  RR )
4624zred 10331 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  RR )
47 fllep1 11165 . . . . . . . . . . . . . 14  |-  ( j  e.  RR  ->  j  <_  ( ( |_ `  j )  +  1 ) )
4847adantl 453 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  <_  ( ( |_ `  j )  +  1 ) )
49 max2 10731 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  ( ( |_ `  j )  +  1 )  e.  RR )  ->  ( ( |_
`  j )  +  1 )  <_  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )
5025, 28, 49syl2an 464 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
5144, 45, 46, 48, 50letrd 9183 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
5251adantr 452 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  <_  if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
) )
53 eluzle 10454 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  <_ 
k )
5453adantl 453 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  <_ 
k )
5539, 41, 43, 52, 54letrd 9183 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  <_  k )
5638, 55jca 519 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  ( k  e.  Z  /\  j  <_  k ) )
5756ex 424 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ( k  e.  Z  /\  j  <_ 
k ) ) )
5857imim1d 71 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( ( k  e.  Z  /\  j  <_  k )  ->  ph )  ->  ( k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ph ) ) )
5934, 58syl5bir 210 . . . . . 6  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( k  e.  Z  ->  ( j  <_  k  ->  ph ) )  ->  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ph ) ) )
6059ralimdv2 2746 . . . . 5  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( A. k  e.  Z  ( j  <_ 
k  ->  ph )  ->  A. k  e.  ( ZZ>=
`  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph ) )
61 fveq2 5687 . . . . . . 7  |-  ( m  =  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  -> 
( ZZ>= `  m )  =  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) ) )
6261raleqdv 2870 . . . . . 6  |-  ( m  =  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  -> 
( A. k  e.  ( ZZ>= `  m ) ph 
<-> 
A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph ) )
6362rspcev 3012 . . . . 5  |-  ( ( if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  Z  /\  A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph )
6433, 60, 63ee12an 1369 . . . 4  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( A. k  e.  Z  ( j  <_ 
k  ->  ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>=
`  m ) ph ) )
6564rexlimdva 2790 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  RR  A. k  e.  Z  ( j  <_  k  ->  ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph ) )
66 fveq2 5687 . . . . 5  |-  ( m  =  j  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  j )
)
6766raleqdv 2870 . . . 4  |-  ( m  =  j  ->  ( A. k  e.  ( ZZ>=
`  m ) ph  <->  A. k  e.  ( ZZ>= `  j ) ph )
)
6867cbvrexv 2893 . . 3  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph )
6965, 68syl6ib 218 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  RR  A. k  e.  Z  ( j  <_  k  ->  ph )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph ) )
7018, 69impbid2 196 1  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    C_ wss 3280   ifcif 3699   class class class wbr 4172   ` cfv 5413  (class class class)co 6040   RRcr 8945   1c1 8947    + caddc 8949    <_ cle 9077   ZZcz 10238   ZZ>=cuz 10444   |_cfl 11156
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-n0 10178  df-z 10239  df-uz 10445  df-fl 11157
  Copyright terms: Public domain W3C validator