MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexuzre Structured version   Unicode version

Theorem rexuzre 13196
Description: Convert an upper real quantifier to an upper integer quantifier. (Contributed by Mario Carneiro, 7-May-2016.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexuzre  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) ) )
Distinct variable groups:    j, M    ph, j    j, k, Z   
k, M
Allowed substitution hint:    ph( k)

Proof of Theorem rexuzre
Dummy variable  m is distinct from all other variables.
StepHypRef Expression
1 eluzelre 11116 . . . . . 6  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  RR )
2 rexuz3.1 . . . . . 6  |-  Z  =  ( ZZ>= `  M )
31, 2eleq2s 2565 . . . . 5  |-  ( j  e.  Z  ->  j  e.  RR )
43adantr 465 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  j  e.  RR )
5 eluzelz 11115 . . . . . . . . . . . 12  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
65, 2eleq2s 2565 . . . . . . . . . . 11  |-  ( j  e.  Z  ->  j  e.  ZZ )
7 eluzelz 11115 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  M
)  ->  k  e.  ZZ )
87, 2eleq2s 2565 . . . . . . . . . . 11  |-  ( k  e.  Z  ->  k  e.  ZZ )
9 eluz 11119 . . . . . . . . . . 11  |-  ( ( j  e.  ZZ  /\  k  e.  ZZ )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
106, 8, 9syl2an 477 . . . . . . . . . 10  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( k  e.  (
ZZ>= `  j )  <->  j  <_  k ) )
1110biimprd 223 . . . . . . . . 9  |-  ( ( j  e.  Z  /\  k  e.  Z )  ->  ( j  <_  k  ->  k  e.  ( ZZ>= `  j ) ) )
1211expimpd 603 . . . . . . . 8  |-  ( j  e.  Z  ->  (
( k  e.  Z  /\  j  <_  k )  ->  k  e.  (
ZZ>= `  j ) ) )
1312imim1d 75 . . . . . . 7  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  ->  ph )  ->  ( ( k  e.  Z  /\  j  <_  k )  ->  ph ) ) )
1413exp4a 606 . . . . . 6  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  ->  ph )  ->  ( k  e.  Z  ->  (
j  <_  k  ->  ph ) ) ) )
1514ralimdv2 2864 . . . . 5  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  A. k  e.  Z  ( j  <_  k  ->  ph ) ) )
1615imp 429 . . . 4  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  A. k  e.  Z  ( j  <_  k  ->  ph ) )
174, 16jca 532 . . 3  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( j  e.  RR  /\ 
A. k  e.  Z  ( j  <_  k  ->  ph ) ) )
1817reximi2 2924 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) )
19 simpl 457 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  M  e.  ZZ )
20 flcl 11934 . . . . . . . . . 10  |-  ( j  e.  RR  ->  ( |_ `  j )  e.  ZZ )
2120adantl 466 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( |_ `  j
)  e.  ZZ )
2221peano2zd 10993 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  e.  ZZ )
2322, 19ifcld 3987 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  ZZ )
24 zre 10889 . . . . . . . 8  |-  ( M  e.  ZZ  ->  M  e.  RR )
25 reflcl 11935 . . . . . . . . 9  |-  ( j  e.  RR  ->  ( |_ `  j )  e.  RR )
26 peano2re 9770 . . . . . . . . 9  |-  ( ( |_ `  j )  e.  RR  ->  (
( |_ `  j
)  +  1 )  e.  RR )
2725, 26syl 16 . . . . . . . 8  |-  ( j  e.  RR  ->  (
( |_ `  j
)  +  1 )  e.  RR )
28 max1 11411 . . . . . . . 8  |-  ( ( M  e.  RR  /\  ( ( |_ `  j )  +  1 )  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )
2924, 27, 28syl2an 477 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  M  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
30 eluz2 11112 . . . . . . 7  |-  ( if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  <->  ( M  e.  ZZ  /\  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  ZZ  /\  M  <_  if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
) ) )
3119, 23, 29, 30syl3anbrc 1180 . . . . . 6  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  (
ZZ>= `  M ) )
3231, 2syl6eleqr 2556 . . . . 5  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  Z
)
33 impexp 446 . . . . . . 7  |-  ( ( ( k  e.  Z  /\  j  <_  k )  ->  ph )  <->  ( k  e.  Z  ->  ( j  <_  k  ->  ph )
) )
34 uzss 11126 . . . . . . . . . . . . 13  |-  ( if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
)  e.  ( ZZ>= `  M )  ->  ( ZZ>=
`  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  ( ZZ>= `  M
) )
3531, 34syl 16 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  ( ZZ>= `  M
) )
3635, 2syl6sseqr 3546 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) 
C_  Z )
3736sselda 3499 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  k  e.  Z )
38 simplr 755 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  e.  RR )
3923adantr 465 . . . . . . . . . . . 12  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  ZZ )
4039zred 10990 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  e.  RR )
41 eluzelre 11116 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )  ->  k  e.  RR )
4241adantl 466 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  k  e.  RR )
43 simpr 461 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  e.  RR )
4427adantl 466 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  e.  RR )
4523zred 10990 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  RR )
46 fllep1 11940 . . . . . . . . . . . . . 14  |-  ( j  e.  RR  ->  j  <_  ( ( |_ `  j )  +  1 ) )
4746adantl 466 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  <_  ( ( |_ `  j )  +  1 ) )
48 max2 11413 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  ( ( |_ `  j )  +  1 )  e.  RR )  ->  ( ( |_
`  j )  +  1 )  <_  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )
4924, 27, 48syl2an 477 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( |_ `  j )  +  1 )  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
5043, 44, 45, 47, 49letrd 9756 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  j  <_  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
5150adantr 465 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  <_  if ( M  <_  (
( |_ `  j
)  +  1 ) ,  ( ( |_
`  j )  +  1 ) ,  M
) )
52 eluzle 11118 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  <_ 
k )
5352adantl 466 . . . . . . . . . . 11  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  <_ 
k )
5438, 40, 42, 51, 53letrd 9756 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  j  <_  k )
5537, 54jca 532 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  j  e.  RR )  /\  k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) ) )  ->  ( k  e.  Z  /\  j  <_  k ) )
5655ex 434 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ( k  e.  Z  /\  j  <_ 
k ) ) )
5756imim1d 75 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( ( k  e.  Z  /\  j  <_  k )  ->  ph )  ->  ( k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ph ) ) )
5833, 57syl5bir 218 . . . . . 6  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( ( k  e.  Z  ->  ( j  <_  k  ->  ph ) )  ->  ( k  e.  ( ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )  ->  ph ) ) )
5958ralimdv2 2864 . . . . 5  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( A. k  e.  Z  ( j  <_ 
k  ->  ph )  ->  A. k  e.  ( ZZ>=
`  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph ) )
60 fveq2 5872 . . . . . . 7  |-  ( m  =  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  -> 
( ZZ>= `  m )  =  ( ZZ>= `  if ( M  <_  ( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M ) ) )
6160raleqdv 3060 . . . . . 6  |-  ( m  =  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M )  -> 
( A. k  e.  ( ZZ>= `  m ) ph 
<-> 
A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph ) )
6261rspcev 3210 . . . . 5  |-  ( ( if ( M  <_ 
( ( |_ `  j )  +  1 ) ,  ( ( |_ `  j )  +  1 ) ,  M )  e.  Z  /\  A. k  e.  (
ZZ>= `  if ( M  <_  ( ( |_
`  j )  +  1 ) ,  ( ( |_ `  j
)  +  1 ) ,  M ) )
ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph )
6332, 59, 62syl6an 545 . . . 4  |-  ( ( M  e.  ZZ  /\  j  e.  RR )  ->  ( A. k  e.  Z  ( j  <_ 
k  ->  ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>=
`  m ) ph ) )
6463rexlimdva 2949 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  RR  A. k  e.  Z  ( j  <_  k  ->  ph )  ->  E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph ) )
65 fveq2 5872 . . . . 5  |-  ( m  =  j  ->  ( ZZ>=
`  m )  =  ( ZZ>= `  j )
)
6665raleqdv 3060 . . . 4  |-  ( m  =  j  ->  ( A. k  e.  ( ZZ>=
`  m ) ph  <->  A. k  e.  ( ZZ>= `  j ) ph )
)
6766cbvrexv 3085 . . 3  |-  ( E. m  e.  Z  A. k  e.  ( ZZ>= `  m ) ph  <->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph )
6864, 67syl6ib 226 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  RR  A. k  e.  Z  ( j  <_  k  ->  ph )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph ) )
6918, 68impbid2 204 1  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  RR  A. k  e.  Z  (
j  <_  k  ->  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   E.wrex 2808    C_ wss 3471   ifcif 3944   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   RRcr 9508   1c1 9510    + caddc 9512    <_ cle 9646   ZZcz 10885   ZZ>=cuz 11106   |_cfl 11929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-fl 11931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator