MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexss Structured version   Unicode version

Theorem rexss 3530
Description: Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
rexss  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ( x  e.  A  /\  ph ) ) )
Distinct variable groups:    x, A    x, B
Allowed substitution hint:    ph( x)

Proof of Theorem rexss
StepHypRef Expression
1 ssel 3461 . . . . 5  |-  ( A 
C_  B  ->  (
x  e.  A  ->  x  e.  B )
)
21pm4.71rd 635 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  A  <->  ( x  e.  B  /\  x  e.  A ) ) )
32anbi1d 704 . . 3  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( (
x  e.  B  /\  x  e.  A )  /\  ph ) ) )
4 anass 649 . . 3  |-  ( ( ( x  e.  B  /\  x  e.  A
)  /\  ph )  <->  ( x  e.  B  /\  (
x  e.  A  /\  ph ) ) )
53, 4syl6bb 261 . 2  |-  ( A 
C_  B  ->  (
( x  e.  A  /\  ph )  <->  ( x  e.  B  /\  (
x  e.  A  /\  ph ) ) ) )
65rexbidv2 2858 1  |-  ( A 
C_  B  ->  ( E. x  e.  A  ph  <->  E. x  e.  B  ( x  e.  A  /\  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1758   E.wrex 2800    C_ wss 3439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-rex 2805  df-in 3446  df-ss 3453
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator