MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrp Structured version   Visualization version   Unicode version

Theorem rexrp 11345
Description: Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
Assertion
Ref Expression
rexrp  |-  ( E. x  e.  RR+  ph  <->  E. x  e.  RR  ( 0  < 
x  /\  ph ) )

Proof of Theorem rexrp
StepHypRef Expression
1 elrp 11327 . . . 4  |-  ( x  e.  RR+  <->  ( x  e.  RR  /\  0  < 
x ) )
21anbi1i 709 . . 3  |-  ( ( x  e.  RR+  /\  ph ) 
<->  ( ( x  e.  RR  /\  0  < 
x )  /\  ph ) )
3 anass 661 . . 3  |-  ( ( ( x  e.  RR  /\  0  <  x )  /\  ph )  <->  ( x  e.  RR  /\  ( 0  <  x  /\  ph ) ) )
42, 3bitri 257 . 2  |-  ( ( x  e.  RR+  /\  ph ) 
<->  ( x  e.  RR  /\  ( 0  <  x  /\  ph ) ) )
54rexbii2 2879 1  |-  ( E. x  e.  RR+  ph  <->  E. x  e.  RR  ( 0  < 
x  /\  ph ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 376    e. wcel 1904   E.wrex 2757   class class class wbr 4395   RRcr 9556   0cc0 9557    < clt 9693   RR+crp 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-rex 2762  df-rab 2765  df-v 3033  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-sn 3960  df-pr 3962  df-op 3966  df-br 4396  df-rp 11326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator