Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrot4 Structured version   Unicode version

Theorem rexrot4 2990
 Description: Rotate four restricted existential quantifiers twice. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexrot4
Distinct variable groups:   ,,   ,,   ,,,   ,,,
Allowed substitution hints:   (,,,)   (,)   (,)   ()   ()

Proof of Theorem rexrot4
StepHypRef Expression
1 rexcom13 2989 . . 3
21rexbii 2925 . 2
3 rexcom13 2989 . 2
42, 3bitri 252 1
 Colors of variables: wff setvar class Syntax hints:   wb 187  wrex 2774 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1838  ax-10 1886  ax-11 1891  ax-12 1904  ax-13 2052  ax-ext 2398 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-ex 1660  df-nf 1664  df-sb 1787  df-cleq 2412  df-clel 2415  df-nfc 2570  df-ral 2778  df-rex 2779 This theorem is referenced by:  lsmspsn  18235
 Copyright terms: Public domain W3C validator