MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrot4 Structured version   Unicode version

Theorem rexrot4 2889
Description: Rotate existential restricted quantifiers twice. (Contributed by NM, 8-Apr-2015.)
Assertion
Ref Expression
rexrot4  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  E. w  e.  D  ph  <->  E. z  e.  C  E. w  e.  D  E. x  e.  A  E. y  e.  B  ph )
Distinct variable groups:    z, w, A    w, B, z    x, w, y, C    x, z, D, y
Allowed substitution hints:    ph( x, y, z, w)    A( x, y)    B( x, y)    C( z)    D( w)

Proof of Theorem rexrot4
StepHypRef Expression
1 rexcom13 2888 . . 3  |-  ( E. y  e.  B  E. z  e.  C  E. w  e.  D  ph  <->  E. w  e.  D  E. z  e.  C  E. y  e.  B  ph )
21rexbii 2745 . 2  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  E. w  e.  D  ph  <->  E. x  e.  A  E. w  e.  D  E. z  e.  C  E. y  e.  B  ph )
3 rexcom13 2888 . 2  |-  ( E. x  e.  A  E. w  e.  D  E. z  e.  C  E. y  e.  B  ph  <->  E. z  e.  C  E. w  e.  D  E. x  e.  A  E. y  e.  B  ph )
42, 3bitri 249 1  |-  ( E. x  e.  A  E. y  e.  B  E. z  e.  C  E. w  e.  D  ph  <->  E. z  e.  C  E. w  e.  D  E. x  e.  A  E. y  e.  B  ph )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184   E.wrex 2721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-cleq 2436  df-clel 2439  df-nfc 2573  df-rex 2726
This theorem is referenced by:  lsmspsn  17170
  Copyright terms: Public domain W3C validator