Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexrabdioph Structured version   Visualization version   Unicode version

Theorem rexrabdioph 35708
Description: Diophantine set builder for existential quantification. (Contributed by Stefan O'Rear, 10-Oct-2014.)
Hypotheses
Ref Expression
rexrabdioph.1  |-  M  =  ( N  +  1 )
rexrabdioph.2  |-  ( v  =  ( t `  M )  ->  ( ps 
<->  ch ) )
rexrabdioph.3  |-  ( u  =  ( t  |`  ( 1 ... N
) )  ->  ( ch 
<-> 
ph ) )
Assertion
Ref Expression
rexrabdioph  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ps }  e.  (Dioph `  N ) )
Distinct variable groups:    t, N, u, v    t, M, u, v    ph, u, v    ps, t    ch, v
Allowed substitution hints:    ph( t)    ps( v, u)    ch( u, t)

Proof of Theorem rexrabdioph
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2765 . . . . . 6  |-  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps }  =  { a  |  ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps ) }
2 dfsbcq 3257 . . . . . . . . . . 11  |-  ( b  =  c  ->  ( [. b  /  v ]. [. a  /  u ]. ps  <->  [. c  /  v ]. [. a  /  u ]. ps ) )
32cbvrexv 3006 . . . . . . . . . 10  |-  ( E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps  <->  E. c  e.  NN0  [. c  /  v ]. [. a  /  u ]. ps )
43anbi2i 708 . . . . . . . . 9  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )  <->  ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. c  e.  NN0  [. c  /  v ]. [. a  /  u ]. ps )
)
5 r19.42v 2931 . . . . . . . . 9  |-  ( E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps )  <->  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. c  e. 
NN0  [. c  /  v ]. [. a  /  u ]. ps ) )
64, 5bitr4i 260 . . . . . . . 8  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )  <->  E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps ) )
7 simpll 768 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  N  e.  NN0 )
8 simpr 468 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... N ) ) )
9 simplr 770 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  c  e.  NN0 )
10 rexrabdioph.1 . . . . . . . . . . . . . . 15  |-  M  =  ( N  +  1 )
1110mapfzcons 35629 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  a  e.  ( NN0  ^m  ( 1 ... N
) )  /\  c  e.  NN0 )  ->  (
a  u.  { <. M ,  c >. } )  e.  ( NN0  ^m  ( 1 ... M
) ) )
127, 8, 9, 11syl3anc 1292 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( a  u. 
{ <. M ,  c
>. } )  e.  ( NN0  ^m  ( 1 ... M ) ) )
1312adantrr 731 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  ( a  u. 
{ <. M ,  c
>. } )  e.  ( NN0  ^m  ( 1 ... M ) ) )
1410mapfzcons2 35632 . . . . . . . . . . . . . . . . 17  |-  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  c  e.  NN0 )  -> 
( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  =  c )
158, 9, 14syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( ( a  u.  { <. M , 
c >. } ) `  M )  =  c )
1615eqcomd 2477 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  c  =  ( ( a  u.  { <. M ,  c >. } ) `  M
) )
1710mapfzcons1 35630 . . . . . . . . . . . . . . . . . 18  |-  ( a  e.  ( NN0  ^m  ( 1 ... N
) )  ->  (
( a  u.  { <. M ,  c >. } )  |`  (
1 ... N ) )  =  a )
1817adantl 473 . . . . . . . . . . . . . . . . 17  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  =  a )
1918eqcomd 2477 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  (
1 ... N ) ) )
2019sbceq1d 3260 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2116, 20sbceqbid 3262 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( ( a  u.  { <. M ,  c >. } ) `
 M )  / 
v ]. [. ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) )  /  u ]. ps ) )
2221biimpd 212 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  a  e.  ( NN0  ^m  ( 1 ... N ) ) )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  ->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
2322impr 631 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  [. ( ( a  u.  { <. M , 
c >. } ) `  M )  /  v ]. [. ( ( a  u.  { <. M , 
c >. } )  |`  ( 1 ... N
) )  /  u ]. ps )
2419adantrr 731 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  (
1 ... N ) ) )
25 fveq1 5878 . . . . . . . . . . . . . . 15  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
b `  M )  =  ( ( a  u.  { <. M , 
c >. } ) `  M ) )
26 reseq1 5105 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
b  |`  ( 1 ... N ) )  =  ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) ) )
2726sbceq1d 3260 . . . . . . . . . . . . . . 15  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
2825, 27sbceqbid 3262 . . . . . . . . . . . . . 14  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( ( a  u. 
{ <. M ,  c
>. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps ) )
2926eqeq2d 2481 . . . . . . . . . . . . . 14  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
a  =  ( b  |`  ( 1 ... N
) )  <->  a  =  ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) ) ) )
3028, 29anbi12d 725 . . . . . . . . . . . . 13  |-  ( b  =  ( a  u. 
{ <. M ,  c
>. } )  ->  (
( [. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) )  <->  ( [. (
( a  u.  { <. M ,  c >. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) ) ) ) )
3130rspcev 3136 . . . . . . . . . . . 12  |-  ( ( ( a  u.  { <. M ,  c >. } )  e.  ( NN0  ^m  ( 1 ... M ) )  /\  ( [. (
( a  u.  { <. M ,  c >. } ) `  M
)  /  v ]. [. ( ( a  u. 
{ <. M ,  c
>. } )  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( ( a  u.  { <. M ,  c >. } )  |`  ( 1 ... N
) ) ) )  ->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
3213, 23, 24, 31syl12anc 1290 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  c  e.  NN0 )  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )  ->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
3332ex 441 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  c  e.  NN0 )  -> 
( ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps )  ->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
3433rexlimdva 2871 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps )  ->  E. b  e.  ( NN0  ^m  (
1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
35 elmapi 7511 . . . . . . . . . . . . . 14  |-  ( b  e.  ( NN0  ^m  ( 1 ... M
) )  ->  b : ( 1 ... M ) --> NN0 )
36 nn0p1nn 10933 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
3710, 36syl5eqel 2553 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  M  e.  NN )
38 elfz1end 11855 . . . . . . . . . . . . . . 15  |-  ( M  e.  NN  <->  M  e.  ( 1 ... M
) )
3937, 38sylib 201 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  M  e.  ( 1 ... M
) )
40 ffvelrn 6035 . . . . . . . . . . . . . 14  |-  ( ( b : ( 1 ... M ) --> NN0 
/\  M  e.  ( 1 ... M ) )  ->  ( b `  M )  e.  NN0 )
4135, 39, 40syl2anr 486 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  b  e.  ( NN0  ^m  ( 1 ... M
) ) )  -> 
( b `  M
)  e.  NN0 )
4241adantr 472 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  ( b `  M )  e.  NN0 )
43 simprr 774 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  a  =  ( b  |`  ( 1 ... N ) ) )
4410mapfzcons1cl 35631 . . . . . . . . . . . . . 14  |-  ( b  e.  ( NN0  ^m  ( 1 ... M
) )  ->  (
b  |`  ( 1 ... N ) )  e.  ( NN0  ^m  (
1 ... N ) ) )
4544ad2antlr 741 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  ( b  |`  ( 1 ... N
) )  e.  ( NN0  ^m  ( 1 ... N ) ) )
4643, 45eqeltrd 2549 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  a  e.  ( NN0  ^m  ( 1 ... N ) ) )
47 simprl 772 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  [. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps )
48 dfsbcq 3257 . . . . . . . . . . . . . . 15  |-  ( a  =  ( b  |`  ( 1 ... N
) )  ->  ( [. a  /  u ]. ps  <->  [. ( b  |`  ( 1 ... N
) )  /  u ]. ps ) )
4948sbcbidv 3310 . . . . . . . . . . . . . 14  |-  ( a  =  ( b  |`  ( 1 ... N
) )  ->  ( [. ( b `  M
)  /  v ]. [. a  /  u ]. ps 
<-> 
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps ) )
5049ad2antll 743 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  ( [. (
b `  M )  /  v ]. [. a  /  u ]. ps  <->  [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps ) )
5147, 50mpbird 240 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  [. ( b `  M )  /  v ]. [. a  /  u ]. ps )
52 dfsbcq 3257 . . . . . . . . . . . . . 14  |-  ( c  =  ( b `  M )  ->  ( [. c  /  v ]. [. a  /  u ]. ps  <->  [. ( b `  M )  /  v ]. [. a  /  u ]. ps ) )
5352anbi2d 718 . . . . . . . . . . . . 13  |-  ( c  =  ( b `  M )  ->  (
( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps )  <->  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  [. ( b `
 M )  / 
v ]. [. a  /  u ]. ps ) ) )
5453rspcev 3136 . . . . . . . . . . . 12  |-  ( ( ( b `  M
)  e.  NN0  /\  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. ( b `
 M )  / 
v ]. [. a  /  u ]. ps ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )
5542, 46, 51, 54syl12anc 1290 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN0  /\  b  e.  ( NN0 
^m  ( 1 ... M ) ) )  /\  ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) )
5655ex 441 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  b  e.  ( NN0  ^m  ( 1 ... M
) ) )  -> 
( ( [. (
b `  M )  /  v ]. [. (
b  |`  ( 1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  ( 1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) ) )
5756rexlimdva 2871 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( E. b  e.  ( NN0 
^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) )  ->  E. c  e.  NN0  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  [. c  / 
v ]. [. a  /  u ]. ps ) ) )
5834, 57impbid 195 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( E. c  e.  NN0  (
a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  [. c  /  v ]. [. a  /  u ]. ps )  <->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
596, 58syl5bb 265 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( a  e.  ( NN0 
^m  ( 1 ... N ) )  /\  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )  <->  E. b  e.  ( NN0 
^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) ) )
6059abbidv 2589 . . . . . 6  |-  ( N  e.  NN0  ->  { a  |  ( a  e.  ( NN0  ^m  (
1 ... N ) )  /\  E. b  e. 
NN0  [. b  /  v ]. [. a  /  u ]. ps ) }  =  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... M
) ) ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) } )
611, 60syl5eq 2517 . . . . 5  |-  ( N  e.  NN0  ->  { a  e.  ( NN0  ^m  ( 1 ... N
) )  |  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps }  =  { a  |  E. b  e.  ( NN0  ^m  ( 1 ... M
) ) ( [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps  /\  a  =  ( b  |`  ( 1 ... N
) ) ) } )
62 nfcv 2612 . . . . . 6  |-  F/_ u
( NN0  ^m  (
1 ... N ) )
63 nfcv 2612 . . . . . 6  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
64 nfv 1769 . . . . . 6  |-  F/ a E. v  e.  NN0  ps
65 nfcv 2612 . . . . . . 7  |-  F/_ u NN0
66 nfcv 2612 . . . . . . . 8  |-  F/_ u
b
67 nfsbc1v 3275 . . . . . . . 8  |-  F/ u [. a  /  u ]. ps
6866, 67nfsbc 3277 . . . . . . 7  |-  F/ u [. b  /  v ]. [. a  /  u ]. ps
6965, 68nfrex 2848 . . . . . 6  |-  F/ u E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps
70 sbceq1a 3266 . . . . . . . 8  |-  ( u  =  a  ->  ( ps 
<-> 
[. a  /  u ]. ps ) )
7170rexbidv 2892 . . . . . . 7  |-  ( u  =  a  ->  ( E. v  e.  NN0  ps  <->  E. v  e.  NN0  [. a  /  u ]. ps )
)
72 nfv 1769 . . . . . . . 8  |-  F/ b
[. a  /  u ]. ps
73 nfsbc1v 3275 . . . . . . . 8  |-  F/ v
[. b  /  v ]. [. a  /  u ]. ps
74 sbceq1a 3266 . . . . . . . 8  |-  ( v  =  b  ->  ( [. a  /  u ]. ps  <->  [. b  /  v ]. [. a  /  u ]. ps ) )
7572, 73, 74cbvrex 3002 . . . . . . 7  |-  ( E. v  e.  NN0  [. a  /  u ]. ps  <->  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )
7671, 75syl6bb 269 . . . . . 6  |-  ( u  =  a  ->  ( E. v  e.  NN0  ps  <->  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps )
)
7762, 63, 64, 69, 76cbvrab 3029 . . . . 5  |-  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ps }  =  {
a  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. b  e.  NN0  [. b  /  v ]. [. a  /  u ]. ps }
78 fveq1 5878 . . . . . . . 8  |-  ( t  =  b  ->  (
t `  M )  =  ( b `  M ) )
79 reseq1 5105 . . . . . . . . 9  |-  ( t  =  b  ->  (
t  |`  ( 1 ... N ) )  =  ( b  |`  (
1 ... N ) ) )
8079sbceq1d 3260 . . . . . . . 8  |-  ( t  =  b  ->  ( [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
8178, 80sbceqbid 3262 . . . . . . 7  |-  ( t  =  b  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  [. ( b `  M
)  /  v ]. [. ( b  |`  (
1 ... N ) )  /  u ]. ps ) )
8281rexrab 3190 . . . . . 6  |-  ( E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps } a  =  ( b  |`  ( 1 ... N ) )  <->  E. b  e.  ( NN0  ^m  ( 1 ... M ) ) (
[. ( b `  M )  /  v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) )
8382abbii 2587 . . . . 5  |-  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... N
) )  /  u ]. ps } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. b  e.  ( NN0  ^m  (
1 ... M ) ) ( [. ( b `
 M )  / 
v ]. [. ( b  |`  ( 1 ... N
) )  /  u ]. ps  /\  a  =  ( b  |`  (
1 ... N ) ) ) }
8461, 77, 833eqtr4g 2530 . . . 4  |-  ( N  e.  NN0  ->  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ps }  =  {
a  |  E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... N
) )  /  u ]. ps } a  =  ( b  |`  (
1 ... N ) ) } )
85 fvex 5889 . . . . . . . . 9  |-  ( t `
 M )  e. 
_V
86 vex 3034 . . . . . . . . . 10  |-  t  e. 
_V
8786resex 5154 . . . . . . . . 9  |-  ( t  |`  ( 1 ... N
) )  e.  _V
88 rexrabdioph.2 . . . . . . . . . 10  |-  ( v  =  ( t `  M )  ->  ( ps 
<->  ch ) )
89 rexrabdioph.3 . . . . . . . . . 10  |-  ( u  =  ( t  |`  ( 1 ... N
) )  ->  ( ch 
<-> 
ph ) )
9088, 89sylan9bb 714 . . . . . . . . 9  |-  ( ( v  =  ( t `
 M )  /\  u  =  ( t  |`  ( 1 ... N
) ) )  -> 
( ps  <->  ph ) )
9185, 87, 90sbc2ie 3323 . . . . . . . 8  |-  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  ph )
9291a1i 11 . . . . . . 7  |-  ( t  e.  ( NN0  ^m  ( 1 ... M
) )  ->  ( [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps  <->  ph ) )
9392rabbiia 3019 . . . . . 6  |-  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps }  =  { t  e.  ( NN0  ^m  (
1 ... M ) )  |  ph }
9493rexeqi 2978 . . . . 5  |-  ( E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  [. ( t `  M
)  /  v ]. [. ( t  |`  (
1 ... N ) )  /  u ]. ps } a  =  ( b  |`  ( 1 ... N ) )  <->  E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M
) )  |  ph } a  =  ( b  |`  ( 1 ... N ) ) )
9594abbii 2587 . . . 4  |-  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  [. ( t `
 M )  / 
v ]. [. ( t  |`  ( 1 ... N
) )  /  u ]. ps } a  =  ( b  |`  (
1 ... N ) ) }  =  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) }
9684, 95syl6eq 2521 . . 3  |-  ( N  e.  NN0  ->  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ps }  =  {
a  |  E. b  e.  { t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) } )
9796adantr 472 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ps }  =  { a  |  E. b  e. 
{ t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) } )
98 simpl 464 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  N  e.  NN0 )
99 nn0z 10984 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
100 uzid 11197 . . . . . 6  |-  ( N  e.  ZZ  ->  N  e.  ( ZZ>= `  N )
)
101 peano2uz 11235 . . . . . 6  |-  ( N  e.  ( ZZ>= `  N
)  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
10299, 100, 1013syl 18 . . . . 5  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  N )
)
10310, 102syl5eqel 2553 . . . 4  |-  ( N  e.  NN0  ->  M  e.  ( ZZ>= `  N )
)
104103adantr 472 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  M  e.  ( ZZ>= `  N ) )
105 simpr 468 . . 3  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... M ) )  |  ph }  e.  (Dioph `  M ) )
106 diophrex 35689 . . 3  |-  ( ( N  e.  NN0  /\  M  e.  ( ZZ>= `  N )  /\  {
t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { a  |  E. b  e.  { t  e.  ( NN0  ^m  (
1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
10798, 104, 105, 106syl3anc 1292 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { a  |  E. b  e.  { t  e.  ( NN0  ^m  (
1 ... M ) )  |  ph } a  =  ( b  |`  ( 1 ... N
) ) }  e.  (Dioph `  N ) )
10897, 107eqeltrd 2549 1  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ps }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   {cab 2457   E.wrex 2757   {crab 2760   [.wsbc 3255    u. cun 3388   {csn 3959   <.cop 3965    |` cres 4841   -->wf 5585   ` cfv 5589  (class class class)co 6308    ^m cmap 7490   1c1 9558    + caddc 9560   NNcn 10631   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   ...cfz 11810  Diophcdioph 35668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-nn 10632  df-n0 10894  df-z 10962  df-uz 11183  df-fz 11811  df-hash 12554  df-mzpcl 35636  df-mzp 35637  df-dioph 35669
This theorem is referenced by:  rexfrabdioph  35709  elnn0rabdioph  35717  dvdsrabdioph  35724
  Copyright terms: Public domain W3C validator