MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexpen Structured version   Unicode version

Theorem rexpen 13818
Description: The real numbers are equinumerous to their own Cartesian product, even though it is not necessarily true that  RR is well-orderable (so we cannot use infxpidm2 8390 directly). (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 16-Jun-2013.)
Assertion
Ref Expression
rexpen  |-  ( RR 
X.  RR )  ~~  RR

Proof of Theorem rexpen
StepHypRef Expression
1 rpnnen 13817 . . . . . 6  |-  RR  ~~  ~P NN
2 nnenom 12054 . . . . . . 7  |-  NN  ~~  om
3 pwen 7687 . . . . . . 7  |-  ( NN 
~~  om  ->  ~P NN  ~~ 
~P om )
42, 3ax-mp 5 . . . . . 6  |-  ~P NN  ~~ 
~P om
51, 4entri 7566 . . . . 5  |-  RR  ~~  ~P om
6 omex 8056 . . . . . 6  |-  om  e.  _V
76pw2en 7621 . . . . 5  |-  ~P om  ~~  ( 2o  ^m  om )
85, 7entri 7566 . . . 4  |-  RR  ~~  ( 2o  ^m  om )
9 xpen 7677 . . . 4  |-  ( ( RR  ~~  ( 2o 
^m  om )  /\  RR  ~~  ( 2o  ^m  om ) )  ->  ( RR  X.  RR )  ~~  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) ) )
108, 8, 9mp2an 672 . . 3  |-  ( RR 
X.  RR )  ~~  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) )
11 2onn 7286 . . . . . . . 8  |-  2o  e.  om
1211elexi 3123 . . . . . . 7  |-  2o  e.  _V
1312, 12, 6xpmapen 7682 . . . . . 6  |-  ( ( 2o  X.  2o )  ^m  om )  ~~  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) )
1413ensymi 7562 . . . . 5  |-  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~~  (
( 2o  X.  2o )  ^m  om )
15 ssid 3523 . . . . . . . . . . . . 13  |-  2o  C_  2o
16 ssnnfi 7736 . . . . . . . . . . . . 13  |-  ( ( 2o  e.  om  /\  2o  C_  2o )  ->  2o  e.  Fin )
1711, 15, 16mp2an 672 . . . . . . . . . . . 12  |-  2o  e.  Fin
18 xpfi 7787 . . . . . . . . . . . 12  |-  ( ( 2o  e.  Fin  /\  2o  e.  Fin )  -> 
( 2o  X.  2o )  e.  Fin )
1917, 17, 18mp2an 672 . . . . . . . . . . 11  |-  ( 2o 
X.  2o )  e. 
Fin
20 isfinite 8065 . . . . . . . . . . 11  |-  ( ( 2o  X.  2o )  e.  Fin  <->  ( 2o  X.  2o )  ~<  om )
2119, 20mpbi 208 . . . . . . . . . 10  |-  ( 2o 
X.  2o )  ~<  om
226canth2 7667 . . . . . . . . . 10  |-  om  ~<  ~P
om
23 sdomtr 7652 . . . . . . . . . 10  |-  ( ( ( 2o  X.  2o )  ~<  om  /\  om  ~<  ~P
om )  ->  ( 2o  X.  2o )  ~<  ~P om )
2421, 22, 23mp2an 672 . . . . . . . . 9  |-  ( 2o 
X.  2o )  ~<  ~P om
25 sdomdom 7540 . . . . . . . . 9  |-  ( ( 2o  X.  2o ) 
~<  ~P om  ->  ( 2o  X.  2o )  ~<_  ~P
om )
2624, 25ax-mp 5 . . . . . . . 8  |-  ( 2o 
X.  2o )  ~<_  ~P
om
27 domentr 7571 . . . . . . . 8  |-  ( ( ( 2o  X.  2o )  ~<_  ~P om  /\  ~P om  ~~  ( 2o  ^m  om ) )  ->  ( 2o  X.  2o )  ~<_  ( 2o  ^m  om )
)
2826, 7, 27mp2an 672 . . . . . . 7  |-  ( 2o 
X.  2o )  ~<_  ( 2o  ^m  om )
29 mapdom1 7679 . . . . . . 7  |-  ( ( 2o  X.  2o )  ~<_  ( 2o  ^m  om )  ->  ( ( 2o 
X.  2o )  ^m  om )  ~<_  ( ( 2o 
^m  om )  ^m  om ) )
3028, 29ax-mp 5 . . . . . 6  |-  ( ( 2o  X.  2o )  ^m  om )  ~<_  ( ( 2o  ^m  om )  ^m  om )
31 mapxpen 7680 . . . . . . . 8  |-  ( ( 2o  e.  om  /\  om  e.  _V  /\  om  e.  _V )  ->  (
( 2o  ^m  om )  ^m  om )  ~~  ( 2o  ^m  ( om  X.  om ) ) )
3211, 6, 6, 31mp3an 1324 . . . . . . 7  |-  ( ( 2o  ^m  om )  ^m  om )  ~~  ( 2o  ^m  ( om  X.  om ) )
3312enref 7545 . . . . . . . 8  |-  2o  ~~  2o
34 xpomen 8389 . . . . . . . 8  |-  ( om 
X.  om )  ~~  om
35 mapen 7678 . . . . . . . 8  |-  ( ( 2o  ~~  2o  /\  ( om  X.  om )  ~~  om )  ->  ( 2o  ^m  ( om  X.  om ) )  ~~  ( 2o  ^m  om ) )
3633, 34, 35mp2an 672 . . . . . . 7  |-  ( 2o 
^m  ( om  X.  om ) )  ~~  ( 2o  ^m  om )
3732, 36entri 7566 . . . . . 6  |-  ( ( 2o  ^m  om )  ^m  om )  ~~  ( 2o  ^m  om )
38 domentr 7571 . . . . . 6  |-  ( ( ( ( 2o  X.  2o )  ^m  om )  ~<_  ( ( 2o  ^m  om )  ^m  om )  /\  ( ( 2o  ^m  om )  ^m  om )  ~~  ( 2o  ^m  om ) )  ->  (
( 2o  X.  2o )  ^m  om )  ~<_  ( 2o  ^m  om )
)
3930, 37, 38mp2an 672 . . . . 5  |-  ( ( 2o  X.  2o )  ^m  om )  ~<_  ( 2o  ^m  om )
40 endomtr 7570 . . . . 5  |-  ( ( ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) )  ~~  ( ( 2o  X.  2o )  ^m  om )  /\  ( ( 2o  X.  2o )  ^m  om )  ~<_  ( 2o  ^m  om )
)  ->  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~<_  ( 2o 
^m  om ) )
4114, 39, 40mp2an 672 . . . 4  |-  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~<_  ( 2o 
^m  om )
42 ovex 6307 . . . . . . 7  |-  ( 2o 
^m  om )  e.  _V
43 0ex 4577 . . . . . . 7  |-  (/)  e.  _V
4442, 43xpsnen 7598 . . . . . 6  |-  ( ( 2o  ^m  om )  X.  { (/) } )  ~~  ( 2o  ^m  om )
4544ensymi 7562 . . . . 5  |-  ( 2o 
^m  om )  ~~  (
( 2o  ^m  om )  X.  { (/) } )
46 snfi 7593 . . . . . . . . . 10  |-  { (/) }  e.  Fin
47 isfinite 8065 . . . . . . . . . 10  |-  ( {
(/) }  e.  Fin  <->  { (/)
}  ~<  om )
4846, 47mpbi 208 . . . . . . . . 9  |-  { (/) } 
~<  om
49 sdomtr 7652 . . . . . . . . 9  |-  ( ( { (/) }  ~<  om  /\  om 
~<  ~P om )  ->  { (/) }  ~<  ~P om )
5048, 22, 49mp2an 672 . . . . . . . 8  |-  { (/) } 
~<  ~P om
51 sdomdom 7540 . . . . . . . 8  |-  ( {
(/) }  ~<  ~P om  ->  { (/) }  ~<_  ~P om )
5250, 51ax-mp 5 . . . . . . 7  |-  { (/) }  ~<_  ~P om
53 domentr 7571 . . . . . . 7  |-  ( ( { (/) }  ~<_  ~P om  /\ 
~P om  ~~  ( 2o 
^m  om ) )  ->  { (/) }  ~<_  ( 2o 
^m  om ) )
5452, 7, 53mp2an 672 . . . . . 6  |-  { (/) }  ~<_  ( 2o  ^m  om )
5542xpdom2 7609 . . . . . 6  |-  ( {
(/) }  ~<_  ( 2o  ^m 
om )  ->  (
( 2o  ^m  om )  X.  { (/) } )  ~<_  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) ) )
5654, 55ax-mp 5 . . . . 5  |-  ( ( 2o  ^m  om )  X.  { (/) } )  ~<_  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )
57 endomtr 7570 . . . . 5  |-  ( ( ( 2o  ^m  om )  ~~  ( ( 2o 
^m  om )  X.  { (/)
} )  /\  (
( 2o  ^m  om )  X.  { (/) } )  ~<_  ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) ) )  ->  ( 2o  ^m  om )  ~<_  ( ( 2o 
^m  om )  X.  ( 2o  ^m  om ) ) )
5845, 56, 57mp2an 672 . . . 4  |-  ( 2o 
^m  om )  ~<_  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )
59 sbth 7634 . . . 4  |-  ( ( ( ( 2o  ^m  om )  X.  ( 2o 
^m  om ) )  ~<_  ( 2o  ^m  om )  /\  ( 2o  ^m  om )  ~<_  ( ( 2o 
^m  om )  X.  ( 2o  ^m  om ) ) )  ->  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~~  ( 2o  ^m  om ) )
6041, 58, 59mp2an 672 . . 3  |-  ( ( 2o  ^m  om )  X.  ( 2o  ^m  om ) )  ~~  ( 2o  ^m  om )
6110, 60entri 7566 . 2  |-  ( RR 
X.  RR )  ~~  ( 2o  ^m  om )
6261, 8entr4i 7569 1  |-  ( RR 
X.  RR )  ~~  RR
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1767   _Vcvv 3113    C_ wss 3476   (/)c0 3785   ~Pcpw 4010   {csn 4027   class class class wbr 4447    X. cxp 4997  (class class class)co 6282   omcom 6678   2oc2o 7121    ^m cmap 7417    ~~ cen 7510    ~<_ cdom 7511    ~< csdm 7512   Fincfn 7513   RRcr 9487   NNcn 10532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-omul 7132  df-er 7308  df-map 7419  df-pm 7420  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-oi 7931  df-card 8316  df-acn 8319  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11079  df-q 11179  df-rp 11217  df-ico 11531  df-icc 11532  df-fz 11669  df-fzo 11789  df-fl 11893  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-limsup 13253  df-clim 13270  df-rlim 13271  df-sum 13468
This theorem is referenced by:  cpnnen  13819
  Copyright terms: Public domain W3C validator