MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexlimdOLD Structured version   Unicode version

Theorem rexlimdOLD 2917
Description: Obsolete proof of rexlimd 2916 as of 14-Jan-2020. (Contributed by NM, 27-May-1998.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rexlimd.1  |-  F/ x ph
rexlimd.2  |-  F/ x ch
rexlimd.3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
Assertion
Ref Expression
rexlimdOLD  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )

Proof of Theorem rexlimdOLD
StepHypRef Expression
1 rexlimd.1 . . 3  |-  F/ x ph
2 rexlimd.3 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
31, 2ralrimi 2832 . 2  |-  ( ph  ->  A. x  e.  A  ( ps  ->  ch )
)
4 rexlimd.2 . . 3  |-  F/ x ch
54r19.23 2911 . 2  |-  ( A. x  e.  A  ( ps  ->  ch )  <->  ( E. x  e.  A  ps  ->  ch ) )
63, 5sylib 199 1  |-  ( ph  ->  ( E. x  e.  A  ps  ->  ch ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   F/wnf 1663    e. wcel 1870   A.wral 2782   E.wrex 2783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-12 1907
This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664  df-ral 2787  df-rex 2788
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator