Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reximddv2 Structured version   Unicode version

Theorem reximddv2 2902
 Description: Double deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
reximddv2.1
reximddv2.2
Assertion
Ref Expression
reximddv2
Distinct variable groups:   ,   ,,
Allowed substitution hints:   (,)   (,)   ()   (,)

Proof of Theorem reximddv2
StepHypRef Expression
1 reximddv2.1 . . . . 5
21ex 435 . . . 4
32reximdva 2900 . . 3
43impr 623 . 2
5 reximddv2.2 . 2
64, 5reximddv 2901 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 370   wcel 1868  wrex 2776 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748 This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-ral 2780  df-rex 2781 This theorem is referenced by:  prmgaplem8  15016  cpmadugsumfi  19888  cpmidg2sum  19891  cayhamlem4  19899  ltgseg  24628  cgraswap  24849  cgracom  24851  cgratr  24852  dfcgra2  24858  xrofsup  28347  prmunb2  36517
 Copyright terms: Public domain W3C validator