MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexima Structured version   Unicode version

Theorem rexima 6139
Description: Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexima  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. x  e.  ( F " B
) ph  <->  E. y  e.  B  ps ) )
Distinct variable groups:    ph, y    ps, x    x, F, y    x, B, y    x, A, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem rexima
StepHypRef Expression
1 fvex 5876 . . 3  |-  ( F `
 y )  e. 
_V
21a1i 11 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  y  e.  B
)  ->  ( F `  y )  e.  _V )
3 fvelimab 5923 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  ( F `  y )  =  x ) )
4 eqcom 2476 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
54rexbii 2965 . . 3  |-  ( E. y  e.  B  ( F `  y )  =  x  <->  E. y  e.  B  x  =  ( F `  y ) )
63, 5syl6bb 261 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  x  =  ( F `  y ) ) )
7 rexima.x . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
87adantl 466 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  x  =  ( F `  y ) )  ->  ( ph  <->  ps ) )
92, 6, 8rexxfr2d 4664 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. x  e.  ( F " B
) ph  <->  E. y  e.  B  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   E.wrex 2815   _Vcvv 3113    C_ wss 3476   "cima 5002    Fn wfn 5583   ` cfv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-fv 5596
This theorem is referenced by:  supisolem  7931  ipodrsima  15652  lmflf  20269  caucfil  21485  dyadmbllem  21771  lhop1lem  22177  mblfinlem1  29656  itg2gt0cn  29675
  Copyright terms: Public domain W3C validator