MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexico Structured version   Unicode version

Theorem rexico 13142
Description: Restrict the base of an upper real quantifier to an upper real set. (Contributed by Mario Carneiro, 12-May-2016.)
Assertion
Ref Expression
rexico  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Distinct variable groups:    j, k, A    B, j, k    ph, j
Allowed substitution hint:    ph( k)

Proof of Theorem rexico
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 simpr 461 . . . 4  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  B  e.  RR )
2 pnfxr 11317 . . . 4  |- +oo  e.  RR*
3 icossre 11601 . . . 4  |-  ( ( B  e.  RR  /\ +oo  e.  RR* )  ->  ( B [,) +oo )  C_  RR )
41, 2, 3sylancl 662 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( B [,) +oo )  C_  RR )
5 ssrexv 3565 . . 3  |-  ( ( B [,) +oo )  C_  RR  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
64, 5syl 16 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  ->  E. j  e.  RR  A. k  e.  A  ( j  <_ 
k  ->  ph ) ) )
7 simpr 461 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  j  e.  RR )
8 simplr 754 . . . . . . 7  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  B  e.  RR )
9 ifcl 3981 . . . . . . 7  |-  ( ( j  e.  RR  /\  B  e.  RR )  ->  if ( B  <_ 
j ,  j ,  B )  e.  RR )
107, 8, 9syl2anc 661 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  if ( B  <_  j ,  j ,  B )  e.  RR )
11 max1 11382 . . . . . . 7  |-  ( ( B  e.  RR  /\  j  e.  RR )  ->  B  <_  if ( B  <_  j ,  j ,  B ) )
128, 7, 11syl2anc 661 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  B  <_  if ( B  <_  j ,  j ,  B ) )
13 elicopnf 11616 . . . . . . 7  |-  ( B  e.  RR  ->  ( if ( B  <_  j ,  j ,  B
)  e.  ( B [,) +oo )  <->  ( if ( B  <_  j ,  j ,  B )  e.  RR  /\  B  <_  if ( B  <_ 
j ,  j ,  B ) ) ) )
1413ad2antlr 726 . . . . . 6  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( if ( B  <_  j , 
j ,  B )  e.  ( B [,) +oo )  <->  ( if ( B  <_  j , 
j ,  B )  e.  RR  /\  B  <_  if ( B  <_ 
j ,  j ,  B ) ) ) )
1510, 12, 14mpbir2and 920 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  if ( B  <_  j ,  j ,  B )  e.  ( B [,) +oo ) )
168adantr 465 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  B  e.  RR )
17 simplr 754 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  j  e.  RR )
18 simpll 753 . . . . . . . . . 10  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  A  C_  RR )
1918sselda 3504 . . . . . . . . 9  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  k  e.  RR )
20 maxle 11387 . . . . . . . . 9  |-  ( ( B  e.  RR  /\  j  e.  RR  /\  k  e.  RR )  ->  ( if ( B  <_  j ,  j ,  B
)  <_  k  <->  ( B  <_  k  /\  j  <_ 
k ) ) )
2116, 17, 19, 20syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( if ( B  <_  j ,  j ,  B )  <_  k  <->  ( B  <_  k  /\  j  <_ 
k ) ) )
22 simpr 461 . . . . . . . 8  |-  ( ( B  <_  k  /\  j  <_  k )  -> 
j  <_  k )
2321, 22syl6bi 228 . . . . . . 7  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( if ( B  <_  j ,  j ,  B )  <_  k  ->  j  <_  k ) )
2423imim1d 75 . . . . . 6  |-  ( ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  /\  k  e.  A
)  ->  ( (
j  <_  k  ->  ph )  ->  ( if ( B  <_  j ,  j ,  B )  <_  k  ->  ph )
) )
2524ralimdva 2872 . . . . 5  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  A. k  e.  A  ( if ( B  <_ 
j ,  j ,  B )  <_  k  ->  ph ) ) )
26 breq1 4450 . . . . . . . 8  |-  ( n  =  if ( B  <_  j ,  j ,  B )  -> 
( n  <_  k  <->  if ( B  <_  j ,  j ,  B
)  <_  k )
)
2726imbi1d 317 . . . . . . 7  |-  ( n  =  if ( B  <_  j ,  j ,  B )  -> 
( ( n  <_ 
k  ->  ph )  <->  ( if ( B  <_  j ,  j ,  B )  <_  k  ->  ph )
) )
2827ralbidv 2903 . . . . . 6  |-  ( n  =  if ( B  <_  j ,  j ,  B )  -> 
( A. k  e.  A  ( n  <_ 
k  ->  ph )  <->  A. k  e.  A  ( if ( B  <_  j ,  j ,  B )  <_  k  ->  ph )
) )
2928rspcev 3214 . . . . 5  |-  ( ( if ( B  <_ 
j ,  j ,  B )  e.  ( B [,) +oo )  /\  A. k  e.  A  ( if ( B  <_ 
j ,  j ,  B )  <_  k  ->  ph ) )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph ) )
3015, 25, 29syl6an 545 . . . 4  |-  ( ( ( A  C_  RR  /\  B  e.  RR )  /\  j  e.  RR )  ->  ( A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph ) ) )
3130rexlimdva 2955 . . 3  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. n  e.  ( B [,) +oo ) A. k  e.  A  ( n  <_  k  ->  ph ) ) )
32 breq1 4450 . . . . . 6  |-  ( n  =  j  ->  (
n  <_  k  <->  j  <_  k ) )
3332imbi1d 317 . . . . 5  |-  ( n  =  j  ->  (
( n  <_  k  ->  ph )  <->  ( j  <_  k  ->  ph ) ) )
3433ralbidv 2903 . . . 4  |-  ( n  =  j  ->  ( A. k  e.  A  ( n  <_  k  ->  ph )  <->  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
3534cbvrexv 3089 . . 3  |-  ( E. n  e.  ( B [,) +oo ) A. k  e.  A  (
n  <_  k  ->  ph )  <->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) )
3631, 35syl6ib 226 . 2  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph )  ->  E. j  e.  ( B [,) +oo ) A. k  e.  A  ( j  <_  k  ->  ph ) ) )
376, 36impbid 191 1  |-  ( ( A  C_  RR  /\  B  e.  RR )  ->  ( E. j  e.  ( B [,) +oo ) A. k  e.  A  (
j  <_  k  ->  ph )  <->  E. j  e.  RR  A. k  e.  A  ( j  <_  k  ->  ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    C_ wss 3476   ifcif 3939   class class class wbr 4447  (class class class)co 6282   RRcr 9487   +oocpnf 9621   RR*cxr 9623    <_ cle 9625   [,)cico 11527
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-pre-lttri 9562  ax-pre-lttrn 9563
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-ico 11531
This theorem is referenced by:  rlimi2  13293  ello1mpt2  13301  dvfsumrlim  22164
  Copyright terms: Public domain W3C validator