Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexfrabdioph Structured version   Unicode version

Theorem rexfrabdioph 35090
Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
Hypothesis
Ref Expression
rexfrabdioph.1  |-  M  =  ( N  +  1 )
Assertion
Ref Expression
rexfrabdioph  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ph }  e.  (Dioph `  N ) )
Distinct variable groups:    u, t,
v, M    t, N, u, v    ph, t
Allowed substitution hints:    ph( v, u)

Proof of Theorem rexfrabdioph
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2564 . . 3  |-  F/_ u
( NN0  ^m  (
1 ... N ) )
2 nfcv 2564 . . 3  |-  F/_ a
( NN0  ^m  (
1 ... N ) )
3 nfv 1728 . . 3  |-  F/ a E. v  e.  NN0  ph
4 nfcv 2564 . . . 4  |-  F/_ u NN0
5 nfsbc1v 3297 . . . 4  |-  F/ u [. a  /  u ]. [. b  /  v ]. ph
64, 5nfrex 2867 . . 3  |-  F/ u E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph
7 nfv 1728 . . . . 5  |-  F/ b
ph
8 nfsbc1v 3297 . . . . 5  |-  F/ v
[. b  /  v ]. ph
9 sbceq1a 3288 . . . . 5  |-  ( v  =  b  ->  ( ph 
<-> 
[. b  /  v ]. ph ) )
107, 8, 9cbvrex 3031 . . . 4  |-  ( E. v  e.  NN0  ph  <->  E. b  e.  NN0  [. b  /  v ]. ph )
11 sbceq1a 3288 . . . . 5  |-  ( u  =  a  ->  ( [. b  /  v ]. ph  <->  [. a  /  u ]. [. b  /  v ]. ph ) )
1211rexbidv 2918 . . . 4  |-  ( u  =  a  ->  ( E. b  e.  NN0  [. b  /  v ]. ph  <->  E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph )
)
1310, 12syl5bb 257 . . 3  |-  ( u  =  a  ->  ( E. v  e.  NN0  ph  <->  E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph )
)
141, 2, 3, 6, 13cbvrab 3057 . 2  |-  { u  e.  ( NN0  ^m  (
1 ... N ) )  |  E. v  e. 
NN0  ph }  =  {
a  e.  ( NN0 
^m  ( 1 ... N ) )  |  E. b  e.  NN0  [. a  /  u ]. [. b  /  v ]. ph }
15 rexfrabdioph.1 . . 3  |-  M  =  ( N  +  1 )
16 dfsbcq 3279 . . . 4  |-  ( b  =  ( t `  M )  ->  ( [. b  /  v ]. ph  <->  [. ( t `  M )  /  v ]. ph ) )
1716sbcbidv 3332 . . 3  |-  ( b  =  ( t `  M )  ->  ( [. a  /  u ]. [. b  /  v ]. ph  <->  [. a  /  u ]. [. ( t `  M )  /  v ]. ph ) )
18 dfsbcq 3279 . . 3  |-  ( a  =  ( t  |`  ( 1 ... N
) )  ->  ( [. a  /  u ]. [. ( t `  M )  /  v ]. ph  <->  [. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph ) )
1915, 17, 18rexrabdioph 35089 . 2  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph }  e.  (Dioph `  M ) )  ->  { a  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. b  e. 
NN0  [. a  /  u ]. [. b  /  v ]. ph }  e.  (Dioph `  N ) )
2014, 19syl5eqel 2494 1  |-  ( ( N  e.  NN0  /\  { t  e.  ( NN0 
^m  ( 1 ... M ) )  | 
[. ( t  |`  ( 1 ... N
) )  /  u ]. [. ( t `  M )  /  v ]. ph }  e.  (Dioph `  M ) )  ->  { u  e.  ( NN0  ^m  ( 1 ... N ) )  |  E. v  e.  NN0  ph }  e.  (Dioph `  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   E.wrex 2755   {crab 2758   [.wsbc 3277    |` cres 4825   ` cfv 5569  (class class class)co 6278    ^m cmap 7457   1c1 9523    + caddc 9525   NN0cn0 10836   ...cfz 11726  Diophcdioph 35049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-inf2 8091  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-hash 12453  df-mzpcl 35017  df-mzp 35018  df-dioph 35050
This theorem is referenced by:  2rexfrabdioph  35091  3rexfrabdioph  35092  7rexfrabdioph  35095  rmxdioph  35320  expdiophlem2  35326
  Copyright terms: Public domain W3C validator