MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexfiuz Structured version   Unicode version

Theorem rexfiuz 12937
Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
Assertion
Ref Expression
rexfiuz  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Distinct variable groups:    j, k, n, A    ph, j
Allowed substitution hints:    ph( k, n)

Proof of Theorem rexfiuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 3013 . . . 4  |-  ( x  =  (/)  ->  ( A. n  e.  x  ph  <->  A. n  e.  (/)  ph )
)
21rexralbidv 2863 . . 3  |-  ( x  =  (/)  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
)
3 raleq 3013 . . 3  |-  ( x  =  (/)  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
42, 3bibi12d 321 . 2  |-  ( x  =  (/)  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
5 raleq 3013 . . . 4  |-  ( x  =  y  ->  ( A. n  e.  x  ph  <->  A. n  e.  y  ph ) )
65rexralbidv 2863 . . 3  |-  ( x  =  y  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph ) )
7 raleq 3013 . . 3  |-  ( x  =  y  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
86, 7bibi12d 321 . 2  |-  ( x  =  y  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
9 raleq 3013 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  ph  <->  A. n  e.  ( y  u.  {
z } ) ph ) )
109rexralbidv 2863 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph ) )
11 raleq 3013 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1210, 11bibi12d 321 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
13 raleq 3013 . . . 4  |-  ( x  =  A  ->  ( A. n  e.  x  ph  <->  A. n  e.  A  ph ) )
1413rexralbidv 2863 . . 3  |-  ( x  =  A  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph ) )
15 raleq 3013 . . 3  |-  ( x  =  A  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1614, 15bibi12d 321 . 2  |-  ( x  =  A  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
17 0z 10758 . . . . 5  |-  0  e.  ZZ
18 ne0i 3741 . . . . 5  |-  ( 0  e.  ZZ  ->  ZZ  =/=  (/) )
1917, 18ax-mp 5 . . . 4  |-  ZZ  =/=  (/)
20 ral0 3882 . . . . 5  |-  A. n  e.  (/)  ph
2120rgen2w 2892 . . . 4  |-  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
22 r19.2z 3867 . . . 4  |-  ( ( ZZ  =/=  (/)  /\  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
2319, 21, 22mp2an 672 . . 3  |-  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
24 ral0 3882 . . 3  |-  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph
2523, 242th 239 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
26 anbi1 706 . . . 4  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
27 rexanuz 12935 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
28 ralunb 3635 . . . . . . 7  |-  ( A. n  e.  ( y  u.  { z } )
ph 
<->  ( A. n  e.  y  ph  /\  A. n  e.  { z } ph ) )
2928ralbii 2831 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
3029rexbii 2847 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
31 vex 3071 . . . . . . 7  |-  z  e. 
_V
32 ralsnsg 4007 . . . . . . . 8  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
33 ralcom 2977 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph )
34 ralsnsg 4007 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3533, 34syl5bb 257 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( A. k  e.  ( ZZ>=
`  j ) A. n  e.  { z } ph  <->  [. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3635rexbidv 2844 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>= `  j ) ph )
)
37 sbcrex 3369 . . . . . . . . 9  |-  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>=
`  j ) ph )
3836, 37syl6rbbr 264 . . . . . . . 8  |-  ( z  e.  _V  ->  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
3932, 38bitrd 253 . . . . . . 7  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
4031, 39ax-mp 5 . . . . . 6  |-  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph )
4140anbi2i 694 . . . . 5  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
4227, 30, 413bitr4i 277 . . . 4  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
43 ralunb 3635 . . . 4  |-  ( A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e. 
{ z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4426, 42, 433bitr4g 288 . . 3  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4544a1i 11 . 2  |-  ( y  e.  Fin  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
464, 8, 12, 16, 25, 45findcard2 7653 1  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   A.wral 2795   E.wrex 2796   _Vcvv 3068   [.wsbc 3284    u. cun 3424   (/)c0 3735   {csn 3975   ` cfv 5516   Fincfn 7410   0cc0 9383   ZZcz 10747   ZZ>=cuz 10962
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-i2m1 9451  ax-1ne0 9452  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-ov 6193  df-om 6577  df-1o 7020  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-neg 9699  df-z 10748  df-uz 10963
This theorem is referenced by:  uniioombllem6  21184  rrncmslem  28869
  Copyright terms: Public domain W3C validator