MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexfiuz Structured version   Visualization version   Unicode version

Theorem rexfiuz 13421
Description: Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
Assertion
Ref Expression
rexfiuz  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Distinct variable groups:    j, k, n, A    ph, j
Allowed substitution hints:    ph( k, n)

Proof of Theorem rexfiuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 raleq 2955 . . . 4  |-  ( x  =  (/)  ->  ( A. n  e.  x  ph  <->  A. n  e.  (/)  ph )
)
21rexralbidv 2879 . . 3  |-  ( x  =  (/)  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
)
3 raleq 2955 . . 3  |-  ( x  =  (/)  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
42, 3bibi12d 327 . 2  |-  ( x  =  (/)  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
5 raleq 2955 . . . 4  |-  ( x  =  y  ->  ( A. n  e.  x  ph  <->  A. n  e.  y  ph ) )
65rexralbidv 2879 . . 3  |-  ( x  =  y  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph ) )
7 raleq 2955 . . 3  |-  ( x  =  y  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
86, 7bibi12d 327 . 2  |-  ( x  =  y  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
9 raleq 2955 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  ph  <->  A. n  e.  ( y  u.  {
z } ) ph ) )
109rexralbidv 2879 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph ) )
11 raleq 2955 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1210, 11bibi12d 327 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
13 raleq 2955 . . . 4  |-  ( x  =  A  ->  ( A. n  e.  x  ph  <->  A. n  e.  A  ph ) )
1413rexralbidv 2879 . . 3  |-  ( x  =  A  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph ) )
15 raleq 2955 . . 3  |-  ( x  =  A  ->  ( A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
1614, 15bibi12d 327 . 2  |-  ( x  =  A  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  x  ph  <->  A. n  e.  x  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
17 0z 10938 . . . . 5  |-  0  e.  ZZ
1817ne0ii 3706 . . . 4  |-  ZZ  =/=  (/)
19 ral0 3842 . . . . 5  |-  A. n  e.  (/)  ph
2019rgen2w 2750 . . . 4  |-  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
21 r19.2z 3826 . . . 4  |-  ( ( ZZ  =/=  (/)  /\  A. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph )
2218, 20, 21mp2an 683 . . 3  |-  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph
23 ral0 3842 . . 3  |-  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph
2422, 232th 247 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (/)  ph  <->  A. n  e.  (/)  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
25 anbi1 718 . . . 4  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) ) )
26 rexanuz 13419 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
27 ralunb 3583 . . . . . . 7  |-  ( A. n  e.  ( y  u.  { z } )
ph 
<->  ( A. n  e.  y  ph  /\  A. n  e.  { z } ph ) )
2827ralbii 2804 . . . . . 6  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
2928rexbii 2862 . . . . 5  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( A. n  e.  y  ph  /\ 
A. n  e.  {
z } ph )
)
30 vex 3016 . . . . . . 7  |-  z  e. 
_V
31 ralsnsg 3971 . . . . . . . 8  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
32 ralcom 2919 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph )
33 ralsnsg 3971 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  ( A. n  e.  { z } A. k  e.  ( ZZ>= `  j ) ph 
<-> 
[. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3432, 33syl5bb 265 . . . . . . . . . 10  |-  ( z  e.  _V  ->  ( A. k  e.  ( ZZ>=
`  j ) A. n  e.  { z } ph  <->  [. z  /  n ]. A. k  e.  (
ZZ>= `  j ) ph ) )
3534rexbidv 2873 . . . . . . . . 9  |-  ( z  e.  _V  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph  <->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>= `  j ) ph )
)
36 sbcrex 3311 . . . . . . . . 9  |-  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  [. z  /  n ]. A. k  e.  ( ZZ>=
`  j ) ph )
3735, 36syl6rbbr 272 . . . . . . . 8  |-  ( z  e.  _V  ->  ( [. z  /  n ]. E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
3831, 37bitrd 261 . . . . . . 7  |-  ( z  e.  _V  ->  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph 
<->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
3930, 38ax-mp 5 . . . . . 6  |-  ( A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph )
4039anbi2i 705 . . . . 5  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  { z } ph ) )
4126, 29, 403bitr4i 285 . . . 4  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  /\  A. n  e.  { z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
42 ralunb 3583 . . . 4  |-  ( A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  <->  ( A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  A. n  e. 
{ z } E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4325, 41, 423bitr4g 296 . . 3  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph  <->  A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  ( y  u.  {
z } ) ph  <->  A. n  e.  ( y  u.  { z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
4443a1i 11 . 2  |-  ( y  e.  Fin  ->  (
( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  y  ph 
<-> 
A. n  e.  y  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  (
y  u.  { z } ) ph  <->  A. n  e.  ( y  u.  {
z } ) E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
) )
454, 8, 12, 16, 24, 44findcard2 7798 1  |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1448    e. wcel 1891    =/= wne 2622   A.wral 2737   E.wrex 2738   _Vcvv 3013   [.wsbc 3235    u. cun 3370   (/)c0 3699   {csn 3936   ` cfv 5561   Fincfn 7556   0cc0 9526   ZZcz 10927   ZZ>=cuz 11149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1673  ax-4 1686  ax-5 1762  ax-6 1809  ax-7 1855  ax-8 1893  ax-9 1900  ax-10 1919  ax-11 1924  ax-12 1937  ax-13 2092  ax-ext 2432  ax-sep 4497  ax-nul 4506  ax-pow 4554  ax-pr 4612  ax-un 6571  ax-cnex 9582  ax-resscn 9583  ax-1cn 9584  ax-icn 9585  ax-addcl 9586  ax-addrcl 9587  ax-mulcl 9588  ax-mulrcl 9589  ax-i2m1 9594  ax-1ne0 9595  ax-rnegex 9597  ax-rrecex 9598  ax-cnre 9599  ax-pre-lttri 9600  ax-pre-lttrn 9601
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 987  df-3an 988  df-tru 1451  df-ex 1668  df-nf 1672  df-sb 1802  df-eu 2304  df-mo 2305  df-clab 2439  df-cleq 2445  df-clel 2448  df-nfc 2582  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3015  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4169  df-br 4375  df-opab 4434  df-mpt 4435  df-tr 4470  df-eprel 4723  df-id 4727  df-po 4733  df-so 4734  df-fr 4771  df-we 4773  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ima 4825  df-ord 5405  df-on 5406  df-lim 5407  df-suc 5408  df-iota 5525  df-fun 5563  df-fn 5564  df-f 5565  df-f1 5566  df-fo 5567  df-f1o 5568  df-fv 5569  df-ov 6279  df-om 6681  df-1o 7169  df-er 7350  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-pnf 9664  df-mnf 9665  df-xr 9666  df-ltxr 9667  df-le 9668  df-neg 9850  df-z 10928  df-uz 11150
This theorem is referenced by:  uniioombllem6  22558  rrncmslem  32166
  Copyright terms: Public domain W3C validator