Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexeqbii Structured version   Visualization version   Unicode version

Theorem rexeqbii 2905
 Description: Equality deduction for restricted existential quantifier, changing both formula and quantifier domain. Inference form. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
rexeqbii.1
rexeqbii.2
Assertion
Ref Expression
rexeqbii

Proof of Theorem rexeqbii
StepHypRef Expression
1 rexeqbii.1 . . . 4
21eleq2i 2521 . . 3
3 rexeqbii.2 . . 3
42, 3anbi12i 703 . 2
54rexbii2 2887 1
 Colors of variables: wff setvar class Syntax hints:   wb 188   wceq 1444   wcel 1887  wrex 2738 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-ext 2431 This theorem depends on definitions:  df-bi 189  df-an 373  df-ex 1664  df-cleq 2444  df-clel 2447  df-rex 2743 This theorem is referenced by:  bnj882  29737
 Copyright terms: Public domain W3C validator