MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexcom4a Structured version   Visualization version   Unicode version

Theorem rexcom4a 3054
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Assertion
Ref Expression
rexcom4a  |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
Distinct variable groups:    x, A    x, y    ph, x
Allowed substitution hints:    ph( y)    ps( x, y)    A( y)

Proof of Theorem rexcom4a
StepHypRef Expression
1 rexcom4 3053 . 2  |-  ( E. y  e.  A  E. x ( ph  /\  ps )  <->  E. x E. y  e.  A  ( ph  /\ 
ps ) )
2 19.42v 1842 . . 3  |-  ( E. x ( ph  /\  ps )  <->  ( ph  /\  E. x ps ) )
32rexbii 2881 . 2  |-  ( E. y  e.  A  E. x ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
41, 3bitr3i 259 1  |-  ( E. x E. y  e.  A  ( ph  /\  ps )  <->  E. y  e.  A  ( ph  /\  E. x ps ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 189    /\ wa 376   E.wex 1671   E.wrex 2757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ral 2761  df-rex 2762  df-v 3033
This theorem is referenced by:  rexcom4b  3055
  Copyright terms: Public domain W3C validator