Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbida Structured version   Unicode version

Theorem rexbida 2931
 Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 6-Oct-2003.)
Hypotheses
Ref Expression
rexbida.1
rexbida.2
Assertion
Ref Expression
rexbida

Proof of Theorem rexbida
StepHypRef Expression
1 rexbida.1 . . 3
2 rexbida.2 . . . 4
32pm5.32da 645 . . 3
41, 3exbid 1941 . 2
5 df-rex 2777 . 2
6 df-rex 2777 . 2
74, 5, 63bitr4g 291 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wa 370  wex 1657  wnf 1661   wcel 1872  wrex 2772 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-12 1909 This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1658  df-nf 1662  df-rex 2777 This theorem is referenced by:  rexbidvaALT  2934  rexbid  2935  dfiun2g  4331  fun11iun  6767  iuneq12daf  28172  bnj1366  29649  glbconxN  32912
 Copyright terms: Public domain W3C validator