MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanuz2 Structured version   Unicode version

Theorem rexanuz2 12941
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
rexanuz2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
)
Distinct variable groups:    j, M    ph, j    j, k, Z    ps, j
Allowed substitution hints:    ph( k)    ps( k)    M( k)

Proof of Theorem rexanuz2
StepHypRef Expression
1 eluzel2 10969 . . . . 5  |-  ( j  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
2 rexuz3.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
31, 2eleq2s 2559 . . . 4  |-  ( j  e.  Z  ->  M  e.  ZZ )
43a1d 25 . . 3  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )  ->  M  e.  ZZ ) )
54rexlimiv 2933 . 2  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  ->  M  e.  ZZ )
63a1d 25 . . . 4  |-  ( j  e.  Z  ->  ( A. k  e.  ( ZZ>=
`  j ) ph  ->  M  e.  ZZ ) )
76rexlimiv 2933 . . 3  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  M  e.  ZZ )
87adantr 465 . 2  |-  ( ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  /\ 
E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps )  ->  M  e.  ZZ )
92rexuz3 12940 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) ) )
102rexuz3 12940 . . . . 5  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
)
112rexuz3 12940 . . . . 5  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
)
1210, 11anbi12d 710 . . . 4  |-  ( M  e.  ZZ  ->  (
( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) ) )
13 rexanuz 12937 . . . 4  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
1412, 13syl6rbbr 264 . . 3  |-  ( M  e.  ZZ  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
) )
159, 14bitrd 253 . 2  |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) (
ph  /\  ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ph  /\ 
E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ps ) ) )
165, 8, 15pm5.21nii 353 1  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )
)
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   A.wral 2795   E.wrex 2796   ` cfv 5518   ZZcz 10749   ZZ>=cuz 10964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-pre-lttri 9459  ax-pre-lttrn 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-op 3984  df-uni 4192  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4736  df-po 4741  df-so 4742  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-ov 6195  df-er 7203  df-en 7413  df-dom 7414  df-sdom 7415  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-neg 9701  df-z 10750  df-uz 10965
This theorem is referenced by:  climuni  13134  2clim  13154  climcn2  13174  lmmo  19102  txlm  19339  cmetcaulem  20917  iscmet3lem2  20921  ulmdvlem3  21985  stoweidlem7  29942
  Copyright terms: Public domain W3C validator