MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexanuz Structured version   Unicode version

Theorem rexanuz 12825
Description: Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
Assertion
Ref Expression
rexanuz  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Distinct variable groups:    j, k    ph, j    ps, j
Allowed substitution hints:    ph( k)    ps( k)

Proof of Theorem rexanuz
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.26 2844 . . . 4  |-  ( A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps )
)
21rexbii 2735 . . 3  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  E. j  e.  ZZ  ( A. k  e.  ( ZZ>= `  j ) ph  /\  A. k  e.  ( ZZ>= `  j ) ps ) )
3 r19.40 2866 . . 3  |-  ( E. j  e.  ZZ  ( A. k  e.  ( ZZ>=
`  j ) ph  /\ 
A. k  e.  (
ZZ>= `  j ) ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
42, 3sylbi 195 . 2  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
)
5 uzf 10856 . . . 4  |-  ZZ>= : ZZ --> ~P ZZ
6 ffn 5554 . . . 4  |-  ( ZZ>= : ZZ --> ~P ZZ  ->  ZZ>=  Fn  ZZ )
7 raleq 2912 . . . . 5  |-  ( x  =  ( ZZ>= `  j
)  ->  ( A. k  e.  x  ph  <->  A. k  e.  ( ZZ>= `  j ) ph )
)
87rexrn 5840 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph ) )
95, 6, 8mp2b 10 . . 3  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
10 raleq 2912 . . . . 5  |-  ( y  =  ( ZZ>= `  j
)  ->  ( A. k  e.  y  ps  <->  A. k  e.  ( ZZ>= `  j ) ps )
)
1110rexrn 5840 . . . 4  |-  ( ZZ>=  Fn  ZZ  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
125, 6, 11mp2b 10 . . 3  |-  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )
13 uzin2 12824 . . . . . . . . 9  |-  ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  -> 
( x  i^i  y
)  e.  ran  ZZ>= )
14 inss1 3565 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  x
15 ssralv 3411 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  x  ->  ( A. k  e.  x  ph 
->  A. k  e.  ( x  i^i  y )
ph ) )
1614, 15ax-mp 5 . . . . . . . . . . 11  |-  ( A. k  e.  x  ph  ->  A. k  e.  ( x  i^i  y )
ph )
17 inss2 3566 . . . . . . . . . . . 12  |-  ( x  i^i  y )  C_  y
18 ssralv 3411 . . . . . . . . . . . 12  |-  ( ( x  i^i  y ) 
C_  y  ->  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps ) )
1917, 18ax-mp 5 . . . . . . . . . . 11  |-  ( A. k  e.  y  ps  ->  A. k  e.  ( x  i^i  y ) ps )
2016, 19anim12i 566 . . . . . . . . . 10  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  ( A. k  e.  (
x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y
) ps ) )
21 r19.26 2844 . . . . . . . . . 10  |-  ( A. k  e.  ( x  i^i  y ) ( ph  /\ 
ps )  <->  ( A. k  e.  ( x  i^i  y ) ph  /\  A. k  e.  ( x  i^i  y ) ps ) )
2220, 21sylibr 212 . . . . . . . . 9  |-  ( ( A. k  e.  x  ph 
/\  A. k  e.  y  ps )  ->  A. k  e.  ( x  i^i  y
) ( ph  /\  ps ) )
23 raleq 2912 . . . . . . . . . 10  |-  ( z  =  ( x  i^i  y )  ->  ( A. k  e.  z 
( ph  /\  ps )  <->  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
) )
2423rspcev 3068 . . . . . . . . 9  |-  ( ( ( x  i^i  y
)  e.  ran  ZZ>=  /\  A. k  e.  ( x  i^i  y ) (
ph  /\  ps )
)  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2513, 22, 24syl2an 477 . . . . . . . 8  |-  ( ( ( x  e.  ran  ZZ>=  /\  y  e.  ran  ZZ>= )  /\  ( A. k  e.  x  ph  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2625an4s 822 . . . . . . 7  |-  ( ( ( x  e.  ran  ZZ>=  /\ 
A. k  e.  x  ph )  /\  ( y  e.  ran  ZZ>=  /\  A. k  e.  y  ps ) )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
2726rexlimdvaa 2837 . . . . . 6  |-  ( ( x  e.  ran  ZZ>=  /\  A. k  e.  x  ph )  ->  ( E. y  e.  ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2827rexlimiva 2831 . . . . 5  |-  ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  ->  ( E. y  e. 
ran  ZZ>= A. k  e.  y  ps  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) ) )
2928imp 429 . . . 4  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps ) )
30 raleq 2912 . . . . . 6  |-  ( z  =  ( ZZ>= `  j
)  ->  ( A. k  e.  z  ( ph  /\  ps )  <->  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
3130rexrn 5840 . . . . 5  |-  ( ZZ>=  Fn  ZZ  ->  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\ 
ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
) )
325, 6, 31mp2b 10 . . . 4  |-  ( E. z  e.  ran  ZZ>= A. k  e.  z  ( ph  /\  ps )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
3329, 32sylib 196 . . 3  |-  ( ( E. x  e.  ran  ZZ>= A. k  e.  x  ph  /\ 
E. y  e.  ran  ZZ>= A. k  e.  y  ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ph  /\  ps )
)
349, 12, 33syl2anbr 480 . 2  |-  ( ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps ) )
354, 34impbii 188 1  |-  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ph  /\ 
ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    e. wcel 1756   A.wral 2710   E.wrex 2711    i^i cin 3322    C_ wss 3323   ~Pcpw 3855   ran crn 4836    Fn wfn 5408   -->wf 5409   ` cfv 5413   ZZcz 10638   ZZ>=cuz 10853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-pre-lttri 9348  ax-pre-lttrn 9349
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-neg 9590  df-z 10639  df-uz 10854
This theorem is referenced by:  rexfiuz  12827  rexuz3  12828  rexanuz2  12829
  Copyright terms: Public domain W3C validator