MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revlen Structured version   Unicode version

Theorem revlen 12394
Description: The reverse of a word has the same length as the original. (Contributed by Stefan O'Rear, 26-Aug-2015.)
Assertion
Ref Expression
revlen  |-  ( W  e. Word  A  ->  ( # `
 (reverse `  W
) )  =  (
# `  W )
)

Proof of Theorem revlen
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 revval 12392 . . 3  |-  ( W  e. Word  A  ->  (reverse `  W )  =  ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) )
21fveq2d 5690 . 2  |-  ( W  e. Word  A  ->  ( # `
 (reverse `  W
) )  =  (
# `  ( x  e.  ( 0..^ ( # `  W ) )  |->  ( W `  ( ( ( # `  W
)  -  1 )  -  x ) ) ) ) )
3 wrdf 12232 . . . . . 6  |-  ( W  e. Word  A  ->  W : ( 0..^ (
# `  W )
) --> A )
43adantr 465 . . . . 5  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  ->  W : ( 0..^ (
# `  W )
) --> A )
5 simpr 461 . . . . . . . 8  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  ->  x  e.  ( 0..^ ( # `  W
) ) )
6 lencl 12241 . . . . . . . . . 10  |-  ( W  e. Word  A  ->  ( # `
 W )  e. 
NN0 )
76adantr 465 . . . . . . . . 9  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( # `  W )  e.  NN0 )
8 nn0z 10661 . . . . . . . . 9  |-  ( (
# `  W )  e.  NN0  ->  ( # `  W
)  e.  ZZ )
9 fzoval 11546 . . . . . . . . 9  |-  ( (
# `  W )  e.  ZZ  ->  ( 0..^ ( # `  W
) )  =  ( 0 ... ( (
# `  W )  -  1 ) ) )
107, 8, 93syl 20 . . . . . . . 8  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( 0..^ ( # `  W ) )  =  ( 0 ... (
( # `  W )  -  1 ) ) )
115, 10eleqtrd 2514 . . . . . . 7  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  ->  x  e.  ( 0 ... ( ( # `  W )  -  1 ) ) )
12 fznn0sub2 11480 . . . . . . 7  |-  ( x  e.  ( 0 ... ( ( # `  W
)  -  1 ) )  ->  ( (
( # `  W )  -  1 )  -  x )  e.  ( 0 ... ( (
# `  W )  -  1 ) ) )
1311, 12syl 16 . . . . . 6  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( ( # `  W )  -  1 )  -  x )  e.  ( 0 ... ( ( # `  W
)  -  1 ) ) )
1413, 10eleqtrrd 2515 . . . . 5  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( ( ( # `  W )  -  1 )  -  x )  e.  ( 0..^ (
# `  W )
) )
154, 14ffvelrnd 5839 . . . 4  |-  ( ( W  e. Word  A  /\  x  e.  ( 0..^ ( # `  W
) ) )  -> 
( W `  (
( ( # `  W
)  -  1 )  -  x ) )  e.  A )
16 eqid 2438 . . . 4  |-  ( x  e.  ( 0..^ (
# `  W )
)  |->  ( W `  ( ( ( # `  W )  -  1 )  -  x ) ) )  =  ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) )
1715, 16fmptd 5862 . . 3  |-  ( W  e. Word  A  ->  (
x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) : ( 0..^ (
# `  W )
) --> A )
18 ffn 5554 . . 3  |-  ( ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) : ( 0..^ (
# `  W )
) --> A  ->  (
x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) )  Fn  ( 0..^ (
# `  W )
) )
19 hashfn 12130 . . 3  |-  ( ( x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) )  Fn  ( 0..^ (
# `  W )
)  ->  ( # `  (
x  e.  ( 0..^ ( # `  W
) )  |->  ( W `
 ( ( (
# `  W )  -  1 )  -  x ) ) ) )  =  ( # `  ( 0..^ ( # `  W ) ) ) )
2017, 18, 193syl 20 . 2  |-  ( W  e. Word  A  ->  ( # `
 ( x  e.  ( 0..^ ( # `  W ) )  |->  ( W `  ( ( ( # `  W
)  -  1 )  -  x ) ) ) )  =  (
# `  ( 0..^ ( # `  W ) ) ) )
21 hashfzo0 12183 . . 3  |-  ( (
# `  W )  e.  NN0  ->  ( # `  (
0..^ ( # `  W
) ) )  =  ( # `  W
) )
226, 21syl 16 . 2  |-  ( W  e. Word  A  ->  ( # `
 ( 0..^ (
# `  W )
) )  =  (
# `  W )
)
232, 20, 223eqtrd 2474 1  |-  ( W  e. Word  A  ->  ( # `
 (reverse `  W
) )  =  (
# `  W )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    e. cmpt 4345    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6086   0cc0 9274   1c1 9275    - cmin 9587   NN0cn0 10571   ZZcz 10638   ...cfz 11429  ..^cfzo 11540   #chash 12095  Word cword 12213  reversecreverse 12219
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-rep 4398  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-int 4124  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-1st 6572  df-2nd 6573  df-recs 6824  df-rdg 6858  df-1o 6912  df-oadd 6916  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-fin 7306  df-card 8101  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-nn 10315  df-n0 10572  df-z 10639  df-uz 10854  df-fz 11430  df-fzo 11541  df-hash 12096  df-word 12221  df-reverse 12227
This theorem is referenced by:  rev0  12396  revs1  12397  revccat  12398  revrev  12399  revco  12454  psgnuni  15996
  Copyright terms: Public domain W3C validator