MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  revccat Structured version   Unicode version

Theorem revccat 12525
Description: Antiautomorphic property of the reversal operation. (Contributed by Stefan O'Rear, 27-Aug-2015.)
Assertion
Ref Expression
revccat  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  (reverse `  ( S concat  T ) )  =  ( (reverse `  T ) concat  (reverse `  S ) ) )

Proof of Theorem revccat
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ccatcl 12393 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( S concat  T )  e. Word  A )
2 revcl 12520 . . . 4  |-  ( ( S concat  T )  e. Word  A  ->  (reverse `  ( S concat  T ) )  e. Word  A
)
3 wrdf 12359 . . . 4  |-  ( (reverse `  ( S concat  T ) )  e. Word  A  -> 
(reverse `  ( S concat  T
) ) : ( 0..^ ( # `  (reverse `  ( S concat  T ) ) ) ) --> A )
4 ffn 5668 . . . 4  |-  ( (reverse `  ( S concat  T ) ) : ( 0..^ ( # `  (reverse `  ( S concat  T ) ) ) ) --> A  ->  (reverse `  ( S concat  T ) )  Fn  (
0..^ ( # `  (reverse `  ( S concat  T ) ) ) ) )
51, 2, 3, 44syl 21 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  (reverse `  ( S concat  T ) )  Fn  (
0..^ ( # `  (reverse `  ( S concat  T ) ) ) ) )
6 revlen 12521 . . . . . . 7  |-  ( ( S concat  T )  e. Word  A  ->  ( # `  (reverse `  ( S concat  T ) ) )  =  (
# `  ( S concat  T ) ) )
71, 6syl 16 . . . . . 6  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  (reverse `  ( S concat  T ) ) )  =  (
# `  ( S concat  T ) ) )
8 ccatlen 12394 . . . . . . 7  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  ( S concat  T ) )  =  ( ( # `  S
)  +  ( # `  T ) ) )
9 lencl 12368 . . . . . . . . 9  |-  ( S  e. Word  A  ->  ( # `
 S )  e. 
NN0 )
109nn0cnd 10750 . . . . . . . 8  |-  ( S  e. Word  A  ->  ( # `
 S )  e.  CC )
11 lencl 12368 . . . . . . . . 9  |-  ( T  e. Word  A  ->  ( # `
 T )  e. 
NN0 )
1211nn0cnd 10750 . . . . . . . 8  |-  ( T  e. Word  A  ->  ( # `
 T )  e.  CC )
13 addcom 9667 . . . . . . . 8  |-  ( ( ( # `  S
)  e.  CC  /\  ( # `  T )  e.  CC )  -> 
( ( # `  S
)  +  ( # `  T ) )  =  ( ( # `  T
)  +  ( # `  S ) ) )
1410, 12, 13syl2an 477 . . . . . . 7  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  S
)  +  ( # `  T ) )  =  ( ( # `  T
)  +  ( # `  S ) ) )
158, 14eqtrd 2495 . . . . . 6  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  ( S concat  T ) )  =  ( ( # `  T
)  +  ( # `  S ) ) )
167, 15eqtrd 2495 . . . . 5  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  (reverse `  ( S concat  T ) ) )  =  ( ( # `  T
)  +  ( # `  S ) ) )
1716oveq2d 6217 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( 0..^ ( # `  (reverse `  ( S concat  T ) ) ) )  =  ( 0..^ ( ( # `  T
)  +  ( # `  S ) ) ) )
1817fneq2d 5611 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( (reverse `  ( S concat  T ) )  Fn  ( 0..^ ( # `  (reverse `  ( S concat  T ) ) ) )  <-> 
(reverse `  ( S concat  T
) )  Fn  (
0..^ ( ( # `  T )  +  (
# `  S )
) ) ) )
195, 18mpbid 210 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  (reverse `  ( S concat  T ) )  Fn  (
0..^ ( ( # `  T )  +  (
# `  S )
) ) )
20 revcl 12520 . . . . 5  |-  ( T  e. Word  A  ->  (reverse `  T )  e. Word  A
)
21 revcl 12520 . . . . 5  |-  ( S  e. Word  A  ->  (reverse `  S )  e. Word  A
)
22 ccatcl 12393 . . . . 5  |-  ( ( (reverse `  T )  e. Word  A  /\  (reverse `  S
)  e. Word  A )  ->  ( (reverse `  T
) concat  (reverse `  S )
)  e. Word  A )
2320, 21, 22syl2anr 478 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( (reverse `  T
) concat  (reverse `  S )
)  e. Word  A )
24 wrdf 12359 . . . 4  |-  ( ( (reverse `  T ) concat  (reverse `  S ) )  e. Word  A  ->  ( (reverse `  T
) concat  (reverse `  S )
) : ( 0..^ ( # `  (
(reverse `  T ) concat  (reverse `  S ) ) ) ) --> A )
25 ffn 5668 . . . 4  |-  ( ( (reverse `  T ) concat  (reverse `  S ) ) : ( 0..^ ( # `  ( (reverse `  T
) concat  (reverse `  S )
) ) ) --> A  ->  ( (reverse `  T
) concat  (reverse `  S )
)  Fn  ( 0..^ ( # `  (
(reverse `  T ) concat  (reverse `  S ) ) ) ) )
2623, 24, 253syl 20 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( (reverse `  T
) concat  (reverse `  S )
)  Fn  ( 0..^ ( # `  (
(reverse `  T ) concat  (reverse `  S ) ) ) ) )
27 ccatlen 12394 . . . . . . 7  |-  ( ( (reverse `  T )  e. Word  A  /\  (reverse `  S
)  e. Word  A )  ->  ( # `  (
(reverse `  T ) concat  (reverse `  S ) ) )  =  ( ( # `  (reverse `  T )
)  +  ( # `  (reverse `  S )
) ) )
2820, 21, 27syl2anr 478 . . . . . 6  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  (
(reverse `  T ) concat  (reverse `  S ) ) )  =  ( ( # `  (reverse `  T )
)  +  ( # `  (reverse `  S )
) ) )
29 revlen 12521 . . . . . . 7  |-  ( T  e. Word  A  ->  ( # `
 (reverse `  T
) )  =  (
# `  T )
)
30 revlen 12521 . . . . . . 7  |-  ( S  e. Word  A  ->  ( # `
 (reverse `  S
) )  =  (
# `  S )
)
3129, 30oveqan12rd 6221 . . . . . 6  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  (reverse `  T ) )  +  ( # `  (reverse `  S ) ) )  =  ( ( # `  T )  +  (
# `  S )
) )
3228, 31eqtrd 2495 . . . . 5  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  (
(reverse `  T ) concat  (reverse `  S ) ) )  =  ( ( # `  T )  +  (
# `  S )
) )
3332oveq2d 6217 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( 0..^ ( # `  ( (reverse `  T
) concat  (reverse `  S )
) ) )  =  ( 0..^ ( (
# `  T )  +  ( # `  S
) ) ) )
3433fneq2d 5611 . . 3  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( (reverse `  T
) concat  (reverse `  S )
)  Fn  ( 0..^ ( # `  (
(reverse `  T ) concat  (reverse `  S ) ) ) )  <->  ( (reverse `  T
) concat  (reverse `  S )
)  Fn  ( 0..^ ( ( # `  T
)  +  ( # `  S ) ) ) ) )
3526, 34mpbid 210 . 2  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( (reverse `  T
) concat  (reverse `  S )
)  Fn  ( 0..^ ( ( # `  T
)  +  ( # `  S ) ) ) )
36 id 22 . . . 4  |-  ( x  e.  ( 0..^ ( ( # `  T
)  +  ( # `  S ) ) )  ->  x  e.  ( 0..^ ( ( # `  T )  +  (
# `  S )
) ) )
3711nn0zd 10857 . . . . 5  |-  ( T  e. Word  A  ->  ( # `
 T )  e.  ZZ )
3837adantl 466 . . . 4  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  T
)  e.  ZZ )
39 fzospliti 11699 . . . 4  |-  ( ( x  e.  ( 0..^ ( ( # `  T
)  +  ( # `  S ) ) )  /\  ( # `  T
)  e.  ZZ )  ->  ( x  e.  ( 0..^ ( # `  T ) )  \/  x  e.  ( (
# `  T )..^ ( ( # `  T
)  +  ( # `  S ) ) ) ) )
4036, 38, 39syl2anr 478 . . 3  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( x  e.  ( 0..^ ( # `  T
) )  \/  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) ) )
41 simpll 753 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  ->  S  e. Word  A )
42 simplr 754 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  ->  T  e. Word  A )
43 fzoval 11672 . . . . . . . . . . . 12  |-  ( (
# `  T )  e.  ZZ  ->  ( 0..^ ( # `  T
) )  =  ( 0 ... ( (
# `  T )  -  1 ) ) )
4438, 43syl 16 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( 0..^ ( # `  T ) )  =  ( 0 ... (
( # `  T )  -  1 ) ) )
4544eleq2d 2524 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( x  e.  ( 0..^ ( # `  T
) )  <->  x  e.  ( 0 ... (
( # `  T )  -  1 ) ) ) )
4645biimpa 484 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  ->  x  e.  ( 0 ... ( ( # `  T )  -  1 ) ) )
47 fznn0sub2 11606 . . . . . . . . 9  |-  ( x  e.  ( 0 ... ( ( # `  T
)  -  1 ) )  ->  ( (
( # `  T )  -  1 )  -  x )  e.  ( 0 ... ( (
# `  T )  -  1 ) ) )
4846, 47syl 16 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( ( # `  T )  -  1 )  -  x )  e.  ( 0 ... ( ( # `  T
)  -  1 ) ) )
4944adantr 465 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( 0..^ ( # `  T ) )  =  ( 0 ... (
( # `  T )  -  1 ) ) )
5048, 49eleqtrrd 2545 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( ( # `  T )  -  1 )  -  x )  e.  ( 0..^ (
# `  T )
) )
51 ccatval3 12397 . . . . . . 7  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  (
( ( # `  T
)  -  1 )  -  x )  e.  ( 0..^ ( # `  T ) ) )  ->  ( ( S concat  T ) `  (
( ( ( # `  T )  -  1 )  -  x )  +  ( # `  S
) ) )  =  ( T `  (
( ( # `  T
)  -  1 )  -  x ) ) )
5241, 42, 50, 51syl3anc 1219 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( S concat  T
) `  ( (
( ( # `  T
)  -  1 )  -  x )  +  ( # `  S
) ) )  =  ( T `  (
( ( # `  T
)  -  1 )  -  x ) ) )
5315oveq1d 6216 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  ( S concat  T ) )  - 
1 )  =  ( ( ( # `  T
)  +  ( # `  S ) )  - 
1 ) )
5412adantl 466 . . . . . . . . . . . 12  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  T
)  e.  CC )
5510adantr 465 . . . . . . . . . . . 12  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  S
)  e.  CC )
56 ax-1cn 9452 . . . . . . . . . . . . 13  |-  1  e.  CC
5756a1i 11 . . . . . . . . . . . 12  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  1  e.  CC )
5854, 55, 57addsubd 9852 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( # `  T )  +  (
# `  S )
)  -  1 )  =  ( ( (
# `  T )  -  1 )  +  ( # `  S
) ) )
5953, 58eqtrd 2495 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  ( S concat  T ) )  - 
1 )  =  ( ( ( # `  T
)  -  1 )  +  ( # `  S
) ) )
6059oveq1d 6216 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  =  ( ( ( (
# `  T )  -  1 )  +  ( # `  S
) )  -  x
) )
6160adantr 465 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  =  ( ( ( (
# `  T )  -  1 )  +  ( # `  S
) )  -  x
) )
62 peano2zm 10800 . . . . . . . . . . . 12  |-  ( (
# `  T )  e.  ZZ  ->  ( ( # `
 T )  - 
1 )  e.  ZZ )
6337, 62syl 16 . . . . . . . . . . 11  |-  ( T  e. Word  A  ->  (
( # `  T )  -  1 )  e.  ZZ )
6463zcnd 10860 . . . . . . . . . 10  |-  ( T  e. Word  A  ->  (
( # `  T )  -  1 )  e.  CC )
6564ad2antlr 726 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( # `  T
)  -  1 )  e.  CC )
6610ad2antrr 725 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( # `  S )  e.  CC )
67 elfzoelz 11671 . . . . . . . . . . 11  |-  ( x  e.  ( 0..^ (
# `  T )
)  ->  x  e.  ZZ )
6867zcnd 10860 . . . . . . . . . 10  |-  ( x  e.  ( 0..^ (
# `  T )
)  ->  x  e.  CC )
6968adantl 466 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  ->  x  e.  CC )
7065, 66, 69addsubd 9852 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( ( (
# `  T )  -  1 )  +  ( # `  S
) )  -  x
)  =  ( ( ( ( # `  T
)  -  1 )  -  x )  +  ( # `  S
) ) )
7161, 70eqtrd 2495 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  =  ( ( ( (
# `  T )  -  1 )  -  x )  +  (
# `  S )
) )
7271fveq2d 5804 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( S concat  T
) `  ( (
( # `  ( S concat  T ) )  - 
1 )  -  x
) )  =  ( ( S concat  T ) `
 ( ( ( ( # `  T
)  -  1 )  -  x )  +  ( # `  S
) ) ) )
73 revfv 12522 . . . . . . 7  |-  ( ( T  e. Word  A  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( (reverse `  T
) `  x )  =  ( T `  ( ( ( # `  T )  -  1 )  -  x ) ) )
7473adantll 713 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( (reverse `  T
) `  x )  =  ( T `  ( ( ( # `  T )  -  1 )  -  x ) ) )
7552, 72, 743eqtr4d 2505 . . . . 5  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( S concat  T
) `  ( (
( # `  ( S concat  T ) )  - 
1 )  -  x
) )  =  ( (reverse `  T ) `  x ) )
761adantr 465 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( S concat  T )  e. Word  A )
77 uzid 10987 . . . . . . . . . . 11  |-  ( (
# `  T )  e.  ZZ  ->  ( # `  T
)  e.  ( ZZ>= `  ( # `  T ) ) )
7838, 77syl 16 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  T
)  e.  ( ZZ>= `  ( # `  T ) ) )
799adantr 465 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  S
)  e.  NN0 )
80 uzaddcl 11023 . . . . . . . . . 10  |-  ( ( ( # `  T
)  e.  ( ZZ>= `  ( # `  T ) )  /\  ( # `  S )  e.  NN0 )  ->  ( ( # `  T )  +  (
# `  S )
)  e.  ( ZZ>= `  ( # `  T ) ) )
8178, 79, 80syl2anc 661 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  T
)  +  ( # `  S ) )  e.  ( ZZ>= `  ( # `  T
) ) )
8215, 81eqeltrd 2542 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  ( S concat  T ) )  e.  ( ZZ>= `  ( # `  T
) ) )
83 fzoss2 11695 . . . . . . . 8  |-  ( (
# `  ( S concat  T ) )  e.  (
ZZ>= `  ( # `  T
) )  ->  (
0..^ ( # `  T
) )  C_  (
0..^ ( # `  ( S concat  T ) ) ) )
8482, 83syl 16 . . . . . . 7  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( 0..^ ( # `  T ) )  C_  ( 0..^ ( # `  ( S concat  T ) ) ) )
8584sselda 3465 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  ->  x  e.  ( 0..^ ( # `  ( S concat  T ) ) ) )
86 revfv 12522 . . . . . 6  |-  ( ( ( S concat  T )  e. Word  A  /\  x  e.  ( 0..^ ( # `  ( S concat  T ) ) ) )  -> 
( (reverse `  ( S concat  T ) ) `  x )  =  ( ( S concat  T ) `
 ( ( (
# `  ( S concat  T ) )  -  1 )  -  x ) ) )
8776, 85, 86syl2anc 661 . . . . 5  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( (reverse `  ( S concat  T ) ) `  x )  =  ( ( S concat  T ) `
 ( ( (
# `  ( S concat  T ) )  -  1 )  -  x ) ) )
8820ad2antlr 726 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
(reverse `  T )  e. Word  A )
8921ad2antrr 725 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
(reverse `  S )  e. Word  A )
9029adantl 466 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  (reverse `  T ) )  =  ( # `  T
) )
9190oveq2d 6217 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( 0..^ ( # `  (reverse `  T )
) )  =  ( 0..^ ( # `  T
) ) )
9291eleq2d 2524 . . . . . . 7  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( x  e.  ( 0..^ ( # `  (reverse `  T ) ) )  <-> 
x  e.  ( 0..^ ( # `  T
) ) ) )
9392biimpar 485 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  ->  x  e.  ( 0..^ ( # `  (reverse `  T ) ) ) )
94 ccatval1 12395 . . . . . 6  |-  ( ( (reverse `  T )  e. Word  A  /\  (reverse `  S
)  e. Word  A  /\  x  e.  ( 0..^ ( # `  (reverse `  T ) ) ) )  ->  ( (
(reverse `  T ) concat  (reverse `  S ) ) `  x )  =  ( (reverse `  T ) `  x ) )
9588, 89, 93, 94syl3anc 1219 . . . . 5  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( ( (reverse `  T
) concat  (reverse `  S )
) `  x )  =  ( (reverse `  T
) `  x )
)
9675, 87, 953eqtr4d 2505 . . . 4  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( # `  T
) ) )  -> 
( (reverse `  ( S concat  T ) ) `  x )  =  ( ( (reverse `  T
) concat  (reverse `  S )
) `  x )
)
978oveq1d 6216 . . . . . . . . . . . 12  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  ( S concat  T ) )  - 
1 )  =  ( ( ( # `  S
)  +  ( # `  T ) )  - 
1 ) )
9855, 54, 57addsubd 9852 . . . . . . . . . . . 12  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( # `  S )  +  (
# `  T )
)  -  1 )  =  ( ( (
# `  S )  -  1 )  +  ( # `  T
) ) )
9997, 98eqtrd 2495 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  ( S concat  T ) )  - 
1 )  =  ( ( ( # `  S
)  -  1 )  +  ( # `  T
) ) )
10099oveq1d 6216 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  =  ( ( ( (
# `  S )  -  1 )  +  ( # `  T
) )  -  x
) )
101100adantr 465 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  =  ( ( ( (
# `  S )  -  1 )  +  ( # `  T
) )  -  x
) )
1029nn0zd 10857 . . . . . . . . . . . . 13  |-  ( S  e. Word  A  ->  ( # `
 S )  e.  ZZ )
103 peano2zm 10800 . . . . . . . . . . . . 13  |-  ( (
# `  S )  e.  ZZ  ->  ( ( # `
 S )  - 
1 )  e.  ZZ )
104102, 103syl 16 . . . . . . . . . . . 12  |-  ( S  e. Word  A  ->  (
( # `  S )  -  1 )  e.  ZZ )
105104zcnd 10860 . . . . . . . . . . 11  |-  ( S  e. Word  A  ->  (
( # `  S )  -  1 )  e.  CC )
106105ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( # `  S
)  -  1 )  e.  CC )
107 elfzoelz 11671 . . . . . . . . . . . 12  |-  ( x  e.  ( ( # `  T )..^ ( (
# `  T )  +  ( # `  S
) ) )  ->  x  e.  ZZ )
108107zcnd 10860 . . . . . . . . . . 11  |-  ( x  e.  ( ( # `  T )..^ ( (
# `  T )  +  ( # `  S
) ) )  ->  x  e.  CC )
109108adantl 466 . . . . . . . . . 10  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  ->  x  e.  CC )
11012ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( # `  T )  e.  CC )
111106, 109, 110subsub3d 9861 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( ( # `  S )  -  1 )  -  ( x  -  ( # `  T
) ) )  =  ( ( ( (
# `  S )  -  1 )  +  ( # `  T
) )  -  x
) )
112101, 111eqtr4d 2498 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  =  ( ( ( # `  S )  -  1 )  -  ( x  -  ( # `  T
) ) ) )
11390oveq2d 6217 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( x  -  ( # `
 (reverse `  T
) ) )  =  ( x  -  ( # `
 T ) ) )
114113oveq2d 6217 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( # `  S )  -  1 )  -  ( x  -  ( # `  (reverse `  T ) ) ) )  =  ( ( ( # `  S
)  -  1 )  -  ( x  -  ( # `  T ) ) ) )
115114adantr 465 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( ( # `  S )  -  1 )  -  ( x  -  ( # `  (reverse `  T ) ) ) )  =  ( ( ( # `  S
)  -  1 )  -  ( x  -  ( # `  T ) ) ) )
116112, 115eqtr4d 2498 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  =  ( ( ( # `  S )  -  1 )  -  ( x  -  ( # `  (reverse `  T ) ) ) ) )
117116fveq2d 5804 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( S `  (
( ( # `  ( S concat  T ) )  - 
1 )  -  x
) )  =  ( S `  ( ( ( # `  S
)  -  1 )  -  ( x  -  ( # `  (reverse `  T
) ) ) ) ) )
118 simpll 753 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  ->  S  e. Word  A )
119 simplr 754 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  ->  T  e. Word  A )
120 zaddcl 10797 . . . . . . . . . . . 12  |-  ( ( ( # `  T
)  e.  ZZ  /\  ( # `  S )  e.  ZZ )  -> 
( ( # `  T
)  +  ( # `  S ) )  e.  ZZ )
12137, 102, 120syl2anr 478 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  T
)  +  ( # `  S ) )  e.  ZZ )
122 peano2zm 10800 . . . . . . . . . . 11  |-  ( ( ( # `  T
)  +  ( # `  S ) )  e.  ZZ  ->  ( (
( # `  T )  +  ( # `  S
) )  -  1 )  e.  ZZ )
123121, 122syl 16 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( # `  T )  +  (
# `  S )
)  -  1 )  e.  ZZ )
124123adantr 465 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( ( # `  T )  +  (
# `  S )
)  -  1 )  e.  ZZ )
125 fzoval 11672 . . . . . . . . . . . 12  |-  ( ( ( # `  T
)  +  ( # `  S ) )  e.  ZZ  ->  ( ( # `
 T )..^ ( ( # `  T
)  +  ( # `  S ) ) )  =  ( ( # `  T ) ... (
( ( # `  T
)  +  ( # `  S ) )  - 
1 ) ) )
126121, 125syl 16 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) )  =  ( ( # `  T
) ... ( ( (
# `  T )  +  ( # `  S
) )  -  1 ) ) )
127126eleq2d 2524 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) )  <->  x  e.  ( ( # `  T
) ... ( ( (
# `  T )  +  ( # `  S
) )  -  1 ) ) ) )
128127biimpa 484 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  ->  x  e.  ( ( # `
 T ) ... ( ( ( # `  T )  +  (
# `  S )
)  -  1 ) ) )
129 fzrev2i 11639 . . . . . . . . 9  |-  ( ( ( ( ( # `  T )  +  (
# `  S )
)  -  1 )  e.  ZZ  /\  x  e.  ( ( # `  T
) ... ( ( (
# `  T )  +  ( # `  S
) )  -  1 ) ) )  -> 
( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  x )  e.  ( ( ( ( ( # `  T
)  +  ( # `  S ) )  - 
1 )  -  (
( ( # `  T
)  +  ( # `  S ) )  - 
1 ) ) ... ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  ( # `  T ) ) ) )
130124, 128, 129syl2anc 661 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  x )  e.  ( ( ( ( ( # `  T
)  +  ( # `  S ) )  - 
1 )  -  (
( ( # `  T
)  +  ( # `  S ) )  - 
1 ) ) ... ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  ( # `  T ) ) ) )
13153oveq1d 6216 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  =  ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  x ) )
132131adantr 465 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  =  ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  x ) )
133102adantr 465 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  S
)  e.  ZZ )
134 fzoval 11672 . . . . . . . . . . 11  |-  ( (
# `  S )  e.  ZZ  ->  ( 0..^ ( # `  S
) )  =  ( 0 ... ( (
# `  S )  -  1 ) ) )
135133, 134syl 16 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( 0..^ ( # `  S ) )  =  ( 0 ... (
( # `  S )  -  1 ) ) )
136123zcnd 10860 . . . . . . . . . . . 12  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( # `  T )  +  (
# `  S )
)  -  1 )  e.  CC )
137136subidd 9819 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  ( ( ( # `  T
)  +  ( # `  S ) )  - 
1 ) )  =  0 )
138 addcl 9476 . . . . . . . . . . . . . 14  |-  ( ( ( # `  T
)  e.  CC  /\  ( # `  S )  e.  CC )  -> 
( ( # `  T
)  +  ( # `  S ) )  e.  CC )
13912, 10, 138syl2anr 478 . . . . . . . . . . . . 13  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  T
)  +  ( # `  S ) )  e.  CC )
140139, 57, 54sub32d 9863 . . . . . . . . . . . 12  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  ( # `  T ) )  =  ( ( ( (
# `  T )  +  ( # `  S
) )  -  ( # `
 T ) )  -  1 ) )
141 pncan2 9729 . . . . . . . . . . . . . 14  |-  ( ( ( # `  T
)  e.  CC  /\  ( # `  S )  e.  CC )  -> 
( ( ( # `  T )  +  (
# `  S )
)  -  ( # `  T ) )  =  ( # `  S
) )
14212, 10, 141syl2anr 478 . . . . . . . . . . . . 13  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( # `  T )  +  (
# `  S )
)  -  ( # `  T ) )  =  ( # `  S
) )
143142oveq1d 6216 . . . . . . . . . . . 12  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( (
# `  T )  +  ( # `  S
) )  -  ( # `
 T ) )  -  1 )  =  ( ( # `  S
)  -  1 ) )
144140, 143eqtrd 2495 . . . . . . . . . . 11  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  ( # `  T ) )  =  ( ( # `  S
)  -  1 ) )
145137, 144oveq12d 6219 . . . . . . . . . 10  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( ( ( ( # `  T
)  +  ( # `  S ) )  - 
1 )  -  (
( ( # `  T
)  +  ( # `  S ) )  - 
1 ) ) ... ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  ( # `  T ) ) )  =  ( 0 ... ( ( # `  S
)  -  1 ) ) )
146135, 145eqtr4d 2498 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( 0..^ ( # `  S ) )  =  ( ( ( ( ( # `  T
)  +  ( # `  S ) )  - 
1 )  -  (
( ( # `  T
)  +  ( # `  S ) )  - 
1 ) ) ... ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  ( # `  T ) ) ) )
147146adantr 465 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( 0..^ ( # `  S ) )  =  ( ( ( ( ( # `  T
)  +  ( # `  S ) )  - 
1 )  -  (
( ( # `  T
)  +  ( # `  S ) )  - 
1 ) ) ... ( ( ( (
# `  T )  +  ( # `  S
) )  -  1 )  -  ( # `  T ) ) ) )
148130, 132, 1473eltr4d 2557 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( ( # `  ( S concat  T ) )  -  1 )  -  x )  e.  ( 0..^ ( # `  S ) ) )
149 ccatval1 12395 . . . . . . 7  |-  ( ( S  e. Word  A  /\  T  e. Word  A  /\  (
( ( # `  ( S concat  T ) )  - 
1 )  -  x
)  e.  ( 0..^ ( # `  S
) ) )  -> 
( ( S concat  T
) `  ( (
( # `  ( S concat  T ) )  - 
1 )  -  x
) )  =  ( S `  ( ( ( # `  ( S concat  T ) )  - 
1 )  -  x
) ) )
150118, 119, 148, 149syl3anc 1219 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( S concat  T
) `  ( (
( # `  ( S concat  T ) )  - 
1 )  -  x
) )  =  ( S `  ( ( ( # `  ( S concat  T ) )  - 
1 )  -  x
) ) )
15129ad2antlr 726 . . . . . . . . 9  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( # `  (reverse `  T
) )  =  (
# `  T )
)
152151oveq2d 6217 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( x  -  ( # `
 (reverse `  T
) ) )  =  ( x  -  ( # `
 T ) ) )
153 id 22 . . . . . . . . 9  |-  ( x  e.  ( ( # `  T )..^ ( (
# `  T )  +  ( # `  S
) ) )  ->  x  e.  ( ( # `
 T )..^ ( ( # `  T
)  +  ( # `  S ) ) ) )
154 fzosubel3 11719 . . . . . . . . 9  |-  ( ( x  e.  ( (
# `  T )..^ ( ( # `  T
)  +  ( # `  S ) ) )  /\  ( # `  S
)  e.  ZZ )  ->  ( x  -  ( # `  T ) )  e.  ( 0..^ ( # `  S
) ) )
155153, 133, 154syl2anr 478 . . . . . . . 8  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( x  -  ( # `
 T ) )  e.  ( 0..^ (
# `  S )
) )
156152, 155eqeltrd 2542 . . . . . . 7  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( x  -  ( # `
 (reverse `  T
) ) )  e.  ( 0..^ ( # `  S ) ) )
157 revfv 12522 . . . . . . 7  |-  ( ( S  e. Word  A  /\  ( x  -  ( # `
 (reverse `  T
) ) )  e.  ( 0..^ ( # `  S ) ) )  ->  ( (reverse `  S
) `  ( x  -  ( # `  (reverse `  T ) ) ) )  =  ( S `
 ( ( (
# `  S )  -  1 )  -  ( x  -  ( # `
 (reverse `  T
) ) ) ) ) )
158118, 156, 157syl2anc 661 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( (reverse `  S
) `  ( x  -  ( # `  (reverse `  T ) ) ) )  =  ( S `
 ( ( (
# `  S )  -  1 )  -  ( x  -  ( # `
 (reverse `  T
) ) ) ) ) )
159117, 150, 1583eqtr4d 2505 . . . . 5  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( S concat  T
) `  ( (
( # `  ( S concat  T ) )  - 
1 )  -  x
) )  =  ( (reverse `  S ) `  ( x  -  ( # `
 (reverse `  T
) ) ) ) )
1601adantr 465 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( S concat  T )  e. Word  A )
16111adantl 466 . . . . . . . . 9  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( # `  T
)  e.  NN0 )
162 fzoss1 11694 . . . . . . . . . 10  |-  ( (
# `  T )  e.  ( ZZ>= `  0 )  ->  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) )  C_  (
0..^ ( ( # `  T )  +  (
# `  S )
) ) )
163 nn0uz 11007 . . . . . . . . . 10  |-  NN0  =  ( ZZ>= `  0 )
164162, 163eleq2s 2562 . . . . . . . . 9  |-  ( (
# `  T )  e.  NN0  ->  ( ( # `
 T )..^ ( ( # `  T
)  +  ( # `  S ) ) ) 
C_  ( 0..^ ( ( # `  T
)  +  ( # `  S ) ) ) )
165161, 164syl 16 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) )  C_  (
0..^ ( ( # `  T )  +  (
# `  S )
) ) )
16615oveq2d 6217 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( 0..^ ( # `  ( S concat  T ) ) )  =  ( 0..^ ( ( # `  T )  +  (
# `  S )
) ) )
167165, 166sseqtr4d 3502 . . . . . . 7  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) )  C_  (
0..^ ( # `  ( S concat  T ) ) ) )
168167sselda 3465 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  ->  x  e.  ( 0..^ ( # `  ( S concat  T ) ) ) )
169160, 168, 86syl2anc 661 . . . . 5  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( (reverse `  ( S concat  T ) ) `  x )  =  ( ( S concat  T ) `
 ( ( (
# `  ( S concat  T ) )  -  1 )  -  x ) ) )
17020ad2antlr 726 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
(reverse `  T )  e. Word  A )
17121ad2antrr 725 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
(reverse `  S )  e. Word  A )
17290, 31oveq12d 6219 . . . . . . . 8  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( ( # `  (reverse `  T ) )..^ ( ( # `  (reverse `  T ) )  +  ( # `  (reverse `  S ) ) ) )  =  ( (
# `  T )..^ ( ( # `  T
)  +  ( # `  S ) ) ) )
173172eleq2d 2524 . . . . . . 7  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  ( x  e.  ( ( # `  (reverse `  T ) )..^ ( ( # `  (reverse `  T ) )  +  ( # `  (reverse `  S ) ) ) )  <->  x  e.  (
( # `  T )..^ ( ( # `  T
)  +  ( # `  S ) ) ) ) )
174173biimpar 485 . . . . . 6  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  ->  x  e.  ( ( # `
 (reverse `  T
) )..^ ( (
# `  (reverse `  T
) )  +  (
# `  (reverse `  S
) ) ) ) )
175 ccatval2 12396 . . . . . 6  |-  ( ( (reverse `  T )  e. Word  A  /\  (reverse `  S
)  e. Word  A  /\  x  e.  ( ( # `
 (reverse `  T
) )..^ ( (
# `  (reverse `  T
) )  +  (
# `  (reverse `  S
) ) ) ) )  ->  ( (
(reverse `  T ) concat  (reverse `  S ) ) `  x )  =  ( (reverse `  S ) `  ( x  -  ( # `
 (reverse `  T
) ) ) ) )
176170, 171, 174, 175syl3anc 1219 . . . . 5  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( ( (reverse `  T
) concat  (reverse `  S )
) `  x )  =  ( (reverse `  S
) `  ( x  -  ( # `  (reverse `  T ) ) ) ) )
177159, 169, 1763eqtr4d 2505 . . . 4  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( ( # `  T
)..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( (reverse `  ( S concat  T ) ) `  x )  =  ( ( (reverse `  T
) concat  (reverse `  S )
) `  x )
)
17896, 177jaodan 783 . . 3  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  ( x  e.  ( 0..^ ( # `  T ) )  \/  x  e.  ( (
# `  T )..^ ( ( # `  T
)  +  ( # `  S ) ) ) ) )  ->  (
(reverse `  ( S concat  T
) ) `  x
)  =  ( ( (reverse `  T ) concat  (reverse `  S ) ) `  x ) )
17940, 178syldan 470 . 2  |-  ( ( ( S  e. Word  A  /\  T  e. Word  A )  /\  x  e.  ( 0..^ ( ( # `  T )  +  (
# `  S )
) ) )  -> 
( (reverse `  ( S concat  T ) ) `  x )  =  ( ( (reverse `  T
) concat  (reverse `  S )
) `  x )
)
18019, 35, 179eqfnfvd 5910 1  |-  ( ( S  e. Word  A  /\  T  e. Word  A )  ->  (reverse `  ( S concat  T ) )  =  ( (reverse `  T ) concat  (reverse `  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758    C_ wss 3437    Fn wfn 5522   -->wf 5523   ` cfv 5527  (class class class)co 6201   CCcc 9392   0cc0 9394   1c1 9395    + caddc 9397    - cmin 9707   NN0cn0 10691   ZZcz 10758   ZZ>=cuz 10973   ...cfz 11555  ..^cfzo 11666   #chash 12221  Word cword 12340   concat cconcat 12342  reversecreverse 12346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4512  ax-sep 4522  ax-nul 4530  ax-pow 4579  ax-pr 4640  ax-un 6483  ax-cnex 9450  ax-resscn 9451  ax-1cn 9452  ax-icn 9453  ax-addcl 9454  ax-addrcl 9455  ax-mulcl 9456  ax-mulrcl 9457  ax-mulcom 9458  ax-addass 9459  ax-mulass 9460  ax-distr 9461  ax-i2m1 9462  ax-1ne0 9463  ax-1rid 9464  ax-rnegex 9465  ax-rrecex 9466  ax-cnre 9467  ax-pre-lttri 9468  ax-pre-lttrn 9469  ax-pre-ltadd 9470  ax-pre-mulgt0 9471
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3747  df-if 3901  df-pw 3971  df-sn 3987  df-pr 3989  df-tp 3991  df-op 3993  df-uni 4201  df-int 4238  df-iun 4282  df-br 4402  df-opab 4460  df-mpt 4461  df-tr 4495  df-eprel 4741  df-id 4745  df-po 4750  df-so 4751  df-fr 4788  df-we 4790  df-ord 4831  df-on 4832  df-lim 4833  df-suc 4834  df-xp 4955  df-rel 4956  df-cnv 4957  df-co 4958  df-dm 4959  df-rn 4960  df-res 4961  df-ima 4962  df-iota 5490  df-fun 5529  df-fn 5530  df-f 5531  df-f1 5532  df-fo 5533  df-f1o 5534  df-fv 5535  df-riota 6162  df-ov 6204  df-oprab 6205  df-mpt2 6206  df-om 6588  df-1st 6688  df-2nd 6689  df-recs 6943  df-rdg 6977  df-1o 7031  df-oadd 7035  df-er 7212  df-en 7422  df-dom 7423  df-sdom 7424  df-fin 7425  df-card 8221  df-pnf 9532  df-mnf 9533  df-xr 9534  df-ltxr 9535  df-le 9536  df-sub 9709  df-neg 9710  df-nn 10435  df-n0 10692  df-z 10759  df-uz 10974  df-fz 11556  df-fzo 11667  df-hash 12222  df-word 12348  df-concat 12350  df-reverse 12354
This theorem is referenced by:  gsumwrev  16001  efginvrel2  16346
  Copyright terms: Public domain W3C validator