Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuun1 Structured version   Unicode version

Theorem reuun1 3761
 Description: Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
Assertion
Ref Expression
reuun1
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem reuun1
StepHypRef Expression
1 ssun1 3635 . 2
2 orc 386 . . 3
32rgenw 2793 . 2
4 reuss2 3759 . 2
51, 3, 4mpanl12 686 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wo 369   wa 370  wral 2782  wrex 2783  wreu 2784   cun 3440   wss 3442 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407 This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ral 2787  df-rex 2788  df-reu 2789  df-v 3089  df-un 3447  df-in 3449  df-ss 3456 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator