MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reusv2lem2 Structured version   Unicode version

Theorem reusv2lem2 4639
Description: Lemma for reusv2 4643. (Contributed by NM, 27-Oct-2010.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reusv2lem2  |-  ( E! x A. y  e.  A  x  =  B  ->  E! x E. y  e.  A  x  =  B )
Distinct variable groups:    x, y, A    x, B
Allowed substitution hint:    B( y)

Proof of Theorem reusv2lem2
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 eunex 4630 . . . . 5  |-  ( E! x A. y  e.  A  x  =  B  ->  E. x  -.  A. y  e.  A  x  =  B )
2 exnal 1635 . . . . 5  |-  ( E. x  -.  A. y  e.  A  x  =  B 
<->  -.  A. x A. y  e.  A  x  =  B )
31, 2sylib 196 . . . 4  |-  ( E! x A. y  e.  A  x  =  B  ->  -.  A. x A. y  e.  A  x  =  B )
4 rzal 3916 . . . . 5  |-  ( A  =  (/)  ->  A. y  e.  A  x  =  B )
54alrimiv 1706 . . . 4  |-  ( A  =  (/)  ->  A. x A. y  e.  A  x  =  B )
63, 5nsyl3 119 . . 3  |-  ( A  =  (/)  ->  -.  E! x A. y  e.  A  x  =  B )
76pm2.21d 106 . 2  |-  ( A  =  (/)  ->  ( E! x A. y  e.  A  x  =  B  ->  E! x E. y  e.  A  x  =  B ) )
8 simpr 461 . . . 4  |-  ( ( A  =/=  (/)  /\  E! x A. y  e.  A  x  =  B )  ->  E! x A. y  e.  A  x  =  B )
9 euex 2294 . . . . . . 7  |-  ( E! x A. y  e.  A  x  =  B  ->  E. x A. y  e.  A  x  =  B )
10 eqeq1 2447 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  =  B  <->  z  =  B ) )
1110ralbidv 2882 . . . . . . . 8  |-  ( x  =  z  ->  ( A. y  e.  A  x  =  B  <->  A. y  e.  A  z  =  B ) )
1211cbvexv 2010 . . . . . . 7  |-  ( E. x A. y  e.  A  x  =  B  <->  E. z A. y  e.  A  z  =  B )
139, 12sylib 196 . . . . . 6  |-  ( E! x A. y  e.  A  x  =  B  ->  E. z A. y  e.  A  z  =  B )
14 nfv 1694 . . . . . . . . . . . 12  |-  F/ y  A  =/=  (/)
15 nfra1 2824 . . . . . . . . . . . 12  |-  F/ y A. y  e.  A  z  =  B
1614, 15nfan 1914 . . . . . . . . . . 11  |-  F/ y ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )
17 nfra1 2824 . . . . . . . . . . 11  |-  F/ y A. y  e.  A  x  =  B
18 simprr 757 . . . . . . . . . . . . . 14  |-  ( ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  /\  (
y  e.  A  /\  x  =  B )
)  ->  x  =  B )
19 rspa 2810 . . . . . . . . . . . . . . 15  |-  ( ( A. y  e.  A  z  =  B  /\  y  e.  A )  ->  z  =  B )
2019ad2ant2lr 747 . . . . . . . . . . . . . 14  |-  ( ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  /\  (
y  e.  A  /\  x  =  B )
)  ->  z  =  B )
2118, 20eqtr4d 2487 . . . . . . . . . . . . 13  |-  ( ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  /\  (
y  e.  A  /\  x  =  B )
)  ->  x  =  z )
22 simplr 755 . . . . . . . . . . . . . 14  |-  ( ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  /\  (
y  e.  A  /\  x  =  B )
)  ->  A. y  e.  A  z  =  B )
2322, 11syl5ibrcom 222 . . . . . . . . . . . . 13  |-  ( ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  /\  (
y  e.  A  /\  x  =  B )
)  ->  ( x  =  z  ->  A. y  e.  A  x  =  B ) )
2421, 23mpd 15 . . . . . . . . . . . 12  |-  ( ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  /\  (
y  e.  A  /\  x  =  B )
)  ->  A. y  e.  A  x  =  B )
2524exp32 605 . . . . . . . . . . 11  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  ->  (
y  e.  A  -> 
( x  =  B  ->  A. y  e.  A  x  =  B )
) )
2616, 17, 25rexlimd 2927 . . . . . . . . . 10  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  ->  ( E. y  e.  A  x  =  B  ->  A. y  e.  A  x  =  B ) )
27 r19.2z 3904 . . . . . . . . . . . 12  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  x  =  B )  ->  E. y  e.  A  x  =  B )
2827ex 434 . . . . . . . . . . 11  |-  ( A  =/=  (/)  ->  ( A. y  e.  A  x  =  B  ->  E. y  e.  A  x  =  B ) )
2928adantr 465 . . . . . . . . . 10  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  ->  ( A. y  e.  A  x  =  B  ->  E. y  e.  A  x  =  B ) )
3026, 29impbid 191 . . . . . . . . 9  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  ->  ( E. y  e.  A  x  =  B  <->  A. y  e.  A  x  =  B ) )
3130eubidv 2290 . . . . . . . 8  |-  ( ( A  =/=  (/)  /\  A. y  e.  A  z  =  B )  ->  ( E! x E. y  e.  A  x  =  B  <-> 
E! x A. y  e.  A  x  =  B ) )
3231ex 434 . . . . . . 7  |-  ( A  =/=  (/)  ->  ( A. y  e.  A  z  =  B  ->  ( E! x E. y  e.  A  x  =  B  <-> 
E! x A. y  e.  A  x  =  B ) ) )
3332exlimdv 1711 . . . . . 6  |-  ( A  =/=  (/)  ->  ( E. z A. y  e.  A  z  =  B  ->  ( E! x E. y  e.  A  x  =  B 
<->  E! x A. y  e.  A  x  =  B ) ) )
3413, 33syl5 32 . . . . 5  |-  ( A  =/=  (/)  ->  ( E! x A. y  e.  A  x  =  B  ->  ( E! x E. y  e.  A  x  =  B 
<->  E! x A. y  e.  A  x  =  B ) ) )
3534imp 429 . . . 4  |-  ( ( A  =/=  (/)  /\  E! x A. y  e.  A  x  =  B )  ->  ( E! x E. y  e.  A  x  =  B  <->  E! x A. y  e.  A  x  =  B ) )
368, 35mpbird 232 . . 3  |-  ( ( A  =/=  (/)  /\  E! x A. y  e.  A  x  =  B )  ->  E! x E. y  e.  A  x  =  B )
3736ex 434 . 2  |-  ( A  =/=  (/)  ->  ( E! x A. y  e.  A  x  =  B  ->  E! x E. y  e.  A  x  =  B ) )
387, 37pm2.61ine 2756 1  |-  ( E! x A. y  e.  A  x  =  B  ->  E! x E. y  e.  A  x  =  B )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1381    = wceq 1383   E.wex 1599    e. wcel 1804   E!weu 2268    =/= wne 2638   A.wral 2793   E.wrex 2794   (/)c0 3770
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-nul 4566  ax-pow 4615
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-v 3097  df-dif 3464  df-nul 3771
This theorem is referenced by:  reusv2lem3  4640
  Copyright terms: Public domain W3C validator