Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuss Structured version   Unicode version

Theorem reuss 3755
 Description: Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
Assertion
Ref Expression
reuss
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem reuss
StepHypRef Expression
1 idd 26 . . . 4
21rgen 2786 . . 3
3 reuss2 3754 . . 3
42, 3mpanl2 686 . 2
543impb 1202 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 371   w3a 983   wcel 1869  wral 2776  wrex 2777  wreu 2778   wss 3437 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401 This theorem depends on definitions:  df-bi 189  df-an 373  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-ral 2781  df-rex 2782  df-reu 2783  df-in 3444  df-ss 3451 This theorem is referenced by:  euelss  3761  riotass  6292  adjbdln  27728
 Copyright terms: Public domain W3C validator