MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reupick2 Structured version   Unicode version

Theorem reupick2 3759
Description: Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Assertion
Ref Expression
reupick2  |-  ( ( ( A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  ps  /\  E! x  e.  A  ph )  /\  x  e.  A
)  ->  ( ph  <->  ps ) )
Distinct variable group:    x, A
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem reupick2
StepHypRef Expression
1 ancr 551 . . . . . 6  |-  ( ( ps  ->  ph )  -> 
( ps  ->  ( ph  /\  ps ) ) )
21ralimi 2818 . . . . 5  |-  ( A. x  e.  A  ( ps  ->  ph )  ->  A. x  e.  A  ( ps  ->  ( ph  /\  ps ) ) )
3 rexim 2890 . . . . 5  |-  ( A. x  e.  A  ( ps  ->  ( ph  /\  ps ) )  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ( ph  /\  ps )
) )
42, 3syl 17 . . . 4  |-  ( A. x  e.  A  ( ps  ->  ph )  ->  ( E. x  e.  A  ps  ->  E. x  e.  A  ( ph  /\  ps )
) )
5 reupick3 3758 . . . . . 6  |-  ( ( E! x  e.  A  ph 
/\  E. x  e.  A  ( ph  /\  ps )  /\  x  e.  A
)  ->  ( ph  ->  ps ) )
653exp 1204 . . . . 5  |-  ( E! x  e.  A  ph  ->  ( E. x  e.  A  ( ph  /\  ps )  ->  ( x  e.  A  ->  ( ph  ->  ps ) ) ) )
76com12 32 . . . 4  |-  ( E. x  e.  A  (
ph  /\  ps )  ->  ( E! x  e.  A  ph  ->  (
x  e.  A  -> 
( ph  ->  ps )
) ) )
84, 7syl6 34 . . 3  |-  ( A. x  e.  A  ( ps  ->  ph )  ->  ( E. x  e.  A  ps  ->  ( E! x  e.  A  ph  ->  (
x  e.  A  -> 
( ph  ->  ps )
) ) ) )
983imp1 1218 . 2  |-  ( ( ( A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  ps  /\  E! x  e.  A  ph )  /\  x  e.  A
)  ->  ( ph  ->  ps ) )
10 rsp 2791 . . . 4  |-  ( A. x  e.  A  ( ps  ->  ph )  ->  (
x  e.  A  -> 
( ps  ->  ph )
) )
11103ad2ant1 1026 . . 3  |-  ( ( A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  ps  /\  E! x  e.  A  ph )  -> 
( x  e.  A  ->  ( ps  ->  ph )
) )
1211imp 430 . 2  |-  ( ( ( A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  ps  /\  E! x  e.  A  ph )  /\  x  e.  A
)  ->  ( ps  ->  ph ) )
139, 12impbid 193 1  |-  ( ( ( A. x  e.  A  ( ps  ->  ph )  /\  E. x  e.  A  ps  /\  E! x  e.  A  ph )  /\  x  e.  A
)  ->  ( ph  <->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    /\ w3a 982    e. wcel 1868   A.wral 2775   E.wrex 2776   E!wreu 2777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-12 1905  ax-13 2053
This theorem depends on definitions:  df-bi 188  df-an 372  df-3an 984  df-ex 1660  df-nf 1664  df-eu 2269  df-mo 2270  df-ral 2780  df-rex 2781  df-reu 2782
This theorem is referenced by:  grpoidval  25927  grpoidinv2  25929  grpoinv  25938
  Copyright terms: Public domain W3C validator