MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuhypd Structured version   Unicode version

Theorem reuhypd 4674
Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in riotaxfrd 6274. (Contributed by NM, 16-Jan-2012.)
Hypotheses
Ref Expression
reuhypd.1  |-  ( (
ph  /\  x  e.  C )  ->  B  e.  C )
reuhypd.2  |-  ( (
ph  /\  x  e.  C  /\  y  e.  C
)  ->  ( x  =  A  <->  y  =  B ) )
Assertion
Ref Expression
reuhypd  |-  ( (
ph  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
Distinct variable groups:    ph, y    y, B    y, C    x, y
Allowed substitution hints:    ph( x)    A( x, y)    B( x)    C( x)

Proof of Theorem reuhypd
StepHypRef Expression
1 reuhypd.1 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  B  e.  C )
2 elex 3122 . . . . 5  |-  ( B  e.  C  ->  B  e.  _V )
31, 2syl 16 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  B  e.  _V )
4 eueq 3275 . . . 4  |-  ( B  e.  _V  <->  E! y 
y  =  B )
53, 4sylib 196 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  E! y  y  =  B
)
6 eleq1 2539 . . . . . . 7  |-  ( y  =  B  ->  (
y  e.  C  <->  B  e.  C ) )
71, 6syl5ibrcom 222 . . . . . 6  |-  ( (
ph  /\  x  e.  C )  ->  (
y  =  B  -> 
y  e.  C ) )
87pm4.71rd 635 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  (
y  =  B  <->  ( y  e.  C  /\  y  =  B ) ) )
9 reuhypd.2 . . . . . . 7  |-  ( (
ph  /\  x  e.  C  /\  y  e.  C
)  ->  ( x  =  A  <->  y  =  B ) )
1093expa 1196 . . . . . 6  |-  ( ( ( ph  /\  x  e.  C )  /\  y  e.  C )  ->  (
x  =  A  <->  y  =  B ) )
1110pm5.32da 641 . . . . 5  |-  ( (
ph  /\  x  e.  C )  ->  (
( y  e.  C  /\  x  =  A
)  <->  ( y  e.  C  /\  y  =  B ) ) )
128, 11bitr4d 256 . . . 4  |-  ( (
ph  /\  x  e.  C )  ->  (
y  =  B  <->  ( y  e.  C  /\  x  =  A ) ) )
1312eubidv 2298 . . 3  |-  ( (
ph  /\  x  e.  C )  ->  ( E! y  y  =  B 
<->  E! y ( y  e.  C  /\  x  =  A ) ) )
145, 13mpbid 210 . 2  |-  ( (
ph  /\  x  e.  C )  ->  E! y ( y  e.  C  /\  x  =  A ) )
15 df-reu 2821 . 2  |-  ( E! y  e.  C  x  =  A  <->  E! y
( y  e.  C  /\  x  =  A
) )
1614, 15sylibr 212 1  |-  ( (
ph  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   E!weu 2275   E!wreu 2816   _Vcvv 3113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-reu 2821  df-v 3115
This theorem is referenced by:  reuhyp  4675  riotaocN  34006
  Copyright terms: Public domain W3C validator