MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuhyp Structured version   Unicode version

Theorem reuhyp 4661
Description: A theorem useful for eliminating the restricted existential uniqueness hypotheses in reuxfr 4659. (Contributed by NM, 15-Nov-2004.)
Hypotheses
Ref Expression
reuhyp.1  |-  ( x  e.  C  ->  B  e.  C )
reuhyp.2  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <-> 
y  =  B ) )
Assertion
Ref Expression
reuhyp  |-  ( x  e.  C  ->  E! y  e.  C  x  =  A )
Distinct variable groups:    y, B    y, C    x, y
Allowed substitution hints:    A( x, y)    B( x)    C( x)

Proof of Theorem reuhyp
StepHypRef Expression
1 tru 1385 . 2  |- T.
2 reuhyp.1 . . . 4  |-  ( x  e.  C  ->  B  e.  C )
32adantl 466 . . 3  |-  ( ( T.  /\  x  e.  C )  ->  B  e.  C )
4 reuhyp.2 . . . 4  |-  ( ( x  e.  C  /\  y  e.  C )  ->  ( x  =  A  <-> 
y  =  B ) )
543adant1 1013 . . 3  |-  ( ( T.  /\  x  e.  C  /\  y  e.  C )  ->  (
x  =  A  <->  y  =  B ) )
63, 5reuhypd 4660 . 2  |-  ( ( T.  /\  x  e.  C )  ->  E! y  e.  C  x  =  A )
71, 6mpan 670 1  |-  ( x  e.  C  ->  E! y  e.  C  x  =  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1381   T. wtru 1382    e. wcel 1802   E!wreu 2793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-reu 2798  df-v 3095
This theorem is referenced by:  riotaneg  10519  zriotaneg  10977  zmax  11183  rebtwnz  11185
  Copyright terms: Public domain W3C validator