MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reu3 Structured version   Visualization version   Unicode version

Theorem reu3 3216
Description: A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.)
Assertion
Ref Expression
reu3  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) ) )
Distinct variable groups:    x, y, A    ph, y
Allowed substitution hint:    ph( x)

Proof of Theorem reu3
StepHypRef Expression
1 reurex 2995 . . 3  |-  ( E! x  e.  A  ph  ->  E. x  e.  A  ph )
2 reu6 3215 . . . 4  |-  ( E! x  e.  A  ph  <->  E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y ) )
3 biimp 198 . . . . . 6  |-  ( (
ph 
<->  x  =  y )  ->  ( ph  ->  x  =  y ) )
43ralimi 2796 . . . . 5  |-  ( A. x  e.  A  ( ph 
<->  x  =  y )  ->  A. x  e.  A  ( ph  ->  x  =  y ) )
54reximi 2852 . . . 4  |-  ( E. y  e.  A  A. x  e.  A  ( ph 
<->  x  =  y )  ->  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )
62, 5sylbi 200 . . 3  |-  ( E! x  e.  A  ph  ->  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )
71, 6jca 541 . 2  |-  ( E! x  e.  A  ph  ->  ( E. x  e.  A  ph  /\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) ) )
8 rexex 2843 . . . 4  |-  ( E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y )  ->  E. y A. x  e.  A  ( ph  ->  x  =  y ) )
98anim2i 579 . . 3  |-  ( ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )  -> 
( E. x  e.  A  ph  /\  E. y A. x  e.  A  ( ph  ->  x  =  y ) ) )
10 eu3v 2347 . . . 4  |-  ( E! x ( x  e.  A  /\  ph )  <->  ( E. x ( x  e.  A  /\  ph )  /\  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) ) )
11 df-reu 2763 . . . 4  |-  ( E! x  e.  A  ph  <->  E! x ( x  e.  A  /\  ph )
)
12 df-rex 2762 . . . . 5  |-  ( E. x  e.  A  ph  <->  E. x ( x  e.  A  /\  ph )
)
13 df-ral 2761 . . . . . . 7  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
14 impexp 453 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
1514albii 1699 . . . . . . 7  |-  ( A. x ( ( x  e.  A  /\  ph )  ->  x  =  y )  <->  A. x ( x  e.  A  ->  ( ph  ->  x  =  y ) ) )
1613, 15bitr4i 260 . . . . . 6  |-  ( A. x  e.  A  ( ph  ->  x  =  y )  <->  A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) )
1716exbii 1726 . . . . 5  |-  ( E. y A. x  e.  A  ( ph  ->  x  =  y )  <->  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) )
1812, 17anbi12i 711 . . . 4  |-  ( ( E. x  e.  A  ph 
/\  E. y A. x  e.  A  ( ph  ->  x  =  y ) )  <->  ( E. x
( x  e.  A  /\  ph )  /\  E. y A. x ( ( x  e.  A  /\  ph )  ->  x  =  y ) ) )
1910, 11, 183bitr4i 285 . . 3  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. y A. x  e.  A  ( ph  ->  x  =  y ) ) )
209, 19sylibr 217 . 2  |-  ( ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) )  ->  E! x  e.  A  ph )
217, 20impbii 192 1  |-  ( E! x  e.  A  ph  <->  ( E. x  e.  A  ph 
/\  E. y  e.  A  A. x  e.  A  ( ph  ->  x  =  y ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376   A.wal 1450   E.wex 1671    e. wcel 1904   E!weu 2319   A.wral 2756   E.wrex 2757   E!wreu 2758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-12 1950  ax-13 2104  ax-ext 2451
This theorem depends on definitions:  df-bi 190  df-an 378  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-cleq 2464  df-clel 2467  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764
This theorem is referenced by:  reu7  3221  2reu4a  38755
  Copyright terms: Public domain W3C validator