MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttopon2 Structured version   Unicode version

Theorem resttopon2 18903
Description: The underlying set of a subspace topology. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( Jt  A )  e.  (TopOn `  ( A  i^i  X
) ) )

Proof of Theorem resttopon2
StepHypRef Expression
1 topontop 18662 . . 3  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
2 resttop 18895 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
31, 2sylan 471 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
4 toponuni 18663 . . . . 5  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
54ineq2d 3659 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  ( A  i^i  X )  =  ( A  i^i  U. J
) )
65adantr 465 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( A  i^i  X )  =  ( A  i^i  U. J ) )
7 eqid 2454 . . . . 5  |-  U. J  =  U. J
87restuni2 18902 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( A  i^i  U. J )  =  U. ( Jt  A ) )
91, 8sylan 471 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( A  i^i  U. J )  =  U. ( Jt  A ) )
106, 9eqtrd 2495 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( A  i^i  X )  = 
U. ( Jt  A ) )
11 istopon 18661 . 2  |-  ( ( Jt  A )  e.  (TopOn `  ( A  i^i  X
) )  <->  ( ( Jt  A )  e.  Top  /\  ( A  i^i  X
)  =  U. ( Jt  A ) ) )
123, 10, 11sylanbrc 664 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  V )  ->  ( Jt  A )  e.  (TopOn `  ( A  i^i  X
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    i^i cin 3434   U.cuni 4198   ` cfv 5525  (class class class)co 6199   ↾t crest 14477   Topctop 18629  TopOnctopon 18630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-ral 2803  df-rex 2804  df-reu 2805  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-om 6586  df-1st 6686  df-2nd 6687  df-recs 6941  df-rdg 6975  df-oadd 7033  df-er 7210  df-en 7420  df-fin 7423  df-fi 7771  df-rest 14479  df-topgen 14500  df-top 18634  df-bases 18636  df-topon 18637
This theorem is referenced by:  resstps  18922  lmss  19033
  Copyright terms: Public domain W3C validator