MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttopon Unicode version

Theorem resttopon 17179
Description: A subspace topology is a topology on the base set. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
resttopon  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )

Proof of Theorem resttopon
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 topontop 16946 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
21adantr 452 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  J  e.  Top )
3 id 20 . . . 4  |-  ( A 
C_  X  ->  A  C_  X )
4 toponmax 16948 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
5 ssexg 4309 . . . 4  |-  ( ( A  C_  X  /\  X  e.  J )  ->  A  e.  _V )
63, 4, 5syl2anr 465 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  e.  _V )
7 resttop 17178 . . 3  |-  ( ( J  e.  Top  /\  A  e.  _V )  ->  ( Jt  A )  e.  Top )
82, 6, 7syl2anc 643 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  Top )
9 simpr 448 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  C_  X )
10 dfss1 3505 . . . . . 6  |-  ( A 
C_  X  <->  ( X  i^i  A )  =  A )
119, 10sylib 189 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( X  i^i  A )  =  A )
12 simpl 444 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  J  e.  (TopOn `  X )
)
134adantr 452 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  X  e.  J )
14 elrestr 13611 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  _V  /\  X  e.  J )  ->  ( X  i^i  A )  e.  ( Jt  A ) )
1512, 6, 13, 14syl3anc 1184 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( X  i^i  A )  e.  ( Jt  A ) )
1611, 15eqeltrrd 2479 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  e.  ( Jt  A ) )
17 elssuni 4003 . . . 4  |-  ( A  e.  ( Jt  A )  ->  A  C_  U. ( Jt  A ) )
1816, 17syl 16 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  C_ 
U. ( Jt  A ) )
19 restval 13609 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  _V )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A
) ) )
206, 19syldan 457 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  =  ran  ( x  e.  J  |->  ( x  i^i  A
) ) )
21 inss2 3522 . . . . . . . . 9  |-  ( x  i^i  A )  C_  A
22 vex 2919 . . . . . . . . . . 11  |-  x  e. 
_V
2322inex1 4304 . . . . . . . . . 10  |-  ( x  i^i  A )  e. 
_V
2423elpw 3765 . . . . . . . . 9  |-  ( ( x  i^i  A )  e.  ~P A  <->  ( x  i^i  A )  C_  A
)
2521, 24mpbir 201 . . . . . . . 8  |-  ( x  i^i  A )  e. 
~P A
2625a1i 11 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  /\  x  e.  J )  ->  (
x  i^i  A )  e.  ~P A )
27 eqid 2404 . . . . . . 7  |-  ( x  e.  J  |->  ( x  i^i  A ) )  =  ( x  e.  J  |->  ( x  i^i 
A ) )
2826, 27fmptd 5852 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  (
x  e.  J  |->  ( x  i^i  A ) ) : J --> ~P A
)
29 frn 5556 . . . . . 6  |-  ( ( x  e.  J  |->  ( x  i^i  A ) ) : J --> ~P A  ->  ran  ( x  e.  J  |->  ( x  i^i 
A ) )  C_  ~P A )
3028, 29syl 16 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ran  ( x  e.  J  |->  ( x  i^i  A
) )  C_  ~P A )
3120, 30eqsstrd 3342 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  C_  ~P A )
32 sspwuni 4136 . . . 4  |-  ( ( Jt  A )  C_  ~P A 
<-> 
U. ( Jt  A ) 
C_  A )
3331, 32sylib 189 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  U. ( Jt  A )  C_  A
)
3418, 33eqssd 3325 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  A  =  U. ( Jt  A ) )
35 istopon 16945 . 2  |-  ( ( Jt  A )  e.  (TopOn `  A )  <->  ( ( Jt  A )  e.  Top  /\  A  =  U. ( Jt  A ) ) )
368, 34, 35sylanbrc 646 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   _Vcvv 2916    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   U.cuni 3975    e. cmpt 4226   ran crn 4838   -->wf 5409   ` cfv 5413  (class class class)co 6040   ↾t crest 13603   Topctop 16913  TopOnctopon 16914
This theorem is referenced by:  restuni  17180  stoig  17181  restsn2  17189  restlp  17201  restperf  17202  perfopn  17203  cnrest  17303  cnrest2  17304  cnrest2r  17305  cnpresti  17306  cnprest  17307  cnprest2  17308  restcnrm  17380  consuba  17436  kgentopon  17523  1stckgenlem  17538  kgen2ss  17540  kgencn  17541  xkoinjcn  17672  qtoprest  17702  flimrest  17968  fclsrest  18009  symgtgp  18084  dvrcn  18166  sszcld  18801  divcn  18851  cncfmptc  18894  cncfmptid  18895  cncfmpt2f  18897  cdivcncf  18900  cnmpt2pc  18906  icchmeo  18919  htpycc  18958  pcocn  18995  pcohtpylem  18997  pcopt  19000  pcopt2  19001  pcoass  19002  pcorevlem  19004  relcmpcmet  19222  limcvallem  19711  ellimc2  19717  limcres  19726  cnplimc  19727  cnlimc  19728  limccnp  19731  limccnp2  19732  dvbss  19741  perfdvf  19743  dvreslem  19749  dvres2lem  19750  dvcnp2  19759  dvcn  19760  dvaddbr  19777  dvmulbr  19778  dvcmulf  19784  dvmptres2  19801  dvmptcmul  19803  dvmptntr  19810  dvmptfsum  19812  dvcnvlem  19813  dvcnv  19814  lhop1lem  19850  lhop2  19852  lhop  19853  dvcnvrelem2  19855  dvcnvre  19856  ftc1lem3  19875  ftc1cn  19880  taylthlem1  20242  ulmdvlem3  20271  psercn  20295  abelth  20310  logcn  20491  cxpcn  20582  cxpcn2  20583  cxpcn3  20585  resqrcn  20586  sqrcn  20587  loglesqr  20595  xrlimcnp  20760  efrlim  20761  ftalem3  20810  xrge0pluscn  24279  xrge0mulc1cn  24280  lmlimxrge0  24287  pnfneige0  24289  lmxrge0  24290  esumcvg  24429  cvxpcon  24882  cvxscon  24883  cvmsf1o  24912  cvmliftlem8  24932  cvmlift2lem9a  24943  cvmlift2lem11  24953  cvmlift3lem6  24964  cnambfre  26154  ftc1cnnc  26178  areacirclem4  26183  areacirclem5  26185  ivthALT  26228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-oadd 6687  df-er 6864  df-en 7069  df-fin 7072  df-fi 7374  df-rest 13605  df-topgen 13622  df-top 16918  df-bases 16920  df-topon 16921
  Copyright terms: Public domain W3C validator