MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttop Unicode version

Theorem resttop 16723
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89.  A is normally a subset of the base set of  J. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
resttop  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )

Proof of Theorem resttop
StepHypRef Expression
1 tgrest 16722 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  =  ( ( topGen `  J )t  A
) )
2 tgtop 16543 . . . . 5  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
32adantr 453 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  J )  =  J )
43oveq1d 5725 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( ( topGen `  J
)t 
A )  =  ( Jt  A ) )
51, 4eqtrd 2285 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  =  ( Jt  A ) )
6 topbas 16542 . . . 4  |-  ( J  e.  Top  ->  J  e. 
TopBases )
76adantr 453 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  J  e.  TopBases )
8 restbas 16721 . . 3  |-  ( J  e.  TopBases  ->  ( Jt  A )  e.  TopBases )
9 tgcl 16539 . . 3  |-  ( ( Jt  A )  e.  TopBases  -> 
( topGen `  ( Jt  A
) )  e.  Top )
107, 8, 93syl 20 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  e.  Top )
115, 10eqeltrrd 2328 1  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   ` cfv 4592  (class class class)co 5710   ↾t crest 13199   topGenctg 13216   Topctop 16463   TopBasesctb 16467
This theorem is referenced by:  resttopon  16724  resttopon2  16731  rest0  16732  restcld  16735  restcls  16743  restntr  16744  ordtrest  16764  cmpsub  16959  fiuncmp  16963  1stcrest  17011  subislly  17039  llyrest  17043  nllyrest  17044  toplly  17048  cldllycmp  17053  kgencmp2  17073  llycmpkgen2  17077  1stckgen  17081  txkgen  17178  zdis  18154  cnmpt2pc  18258  dvbss  19083  dvreslem  19091  dvres2lem  19092  dvcnp2  19101  dvmptres  19144  ulmdvlem3  19611  psercn  19634  abelth  19649  cvxpcon  22944  cvmscld  22975  stfincomp  24757
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-rep 4028  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-int 3761  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-1st 5974  df-2nd 5975  df-recs 6274  df-rdg 6309  df-oadd 6369  df-er 6546  df-en 6750  df-fin 6753  df-fi 7049  df-rest 13201  df-topgen 13218  df-top 16468  df-bases 16470
  Copyright terms: Public domain W3C validator