MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resttop Unicode version

Theorem resttop 17178
Description: A subspace topology is a topology. Definition of subspace topology in [Munkres] p. 89.  A is normally a subset of the base set of  J. (Contributed by FL, 15-Apr-2007.) (Revised by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
resttop  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )

Proof of Theorem resttop
StepHypRef Expression
1 tgrest 17177 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  =  ( ( topGen `  J )t  A
) )
2 tgtop 16993 . . . . 5  |-  ( J  e.  Top  ->  ( topGen `
 J )  =  J )
32adantr 452 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  J )  =  J )
43oveq1d 6055 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( ( topGen `  J
)t 
A )  =  ( Jt  A ) )
51, 4eqtrd 2436 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  =  ( Jt  A ) )
6 topbas 16992 . . . 4  |-  ( J  e.  Top  ->  J  e. 
TopBases )
76adantr 452 . . 3  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  J  e.  TopBases )
8 restbas 17176 . . 3  |-  ( J  e.  TopBases  ->  ( Jt  A )  e.  TopBases )
9 tgcl 16989 . . 3  |-  ( ( Jt  A )  e.  TopBases  -> 
( topGen `  ( Jt  A
) )  e.  Top )
107, 8, 93syl 19 . 2  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( topGen `  ( Jt  A
) )  e.  Top )
115, 10eqeltrrd 2479 1  |-  ( ( J  e.  Top  /\  A  e.  V )  ->  ( Jt  A )  e.  Top )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   ↾t crest 13603   topGenctg 13620   Topctop 16913   TopBasesctb 16917
This theorem is referenced by:  resttopon  17179  resttopon2  17186  rest0  17187  restcld  17190  neitr  17198  restcls  17199  restntr  17200  ordtrest  17220  cmpsub  17417  fiuncmp  17421  1stcrest  17469  subislly  17497  llyrest  17501  nllyrest  17502  toplly  17506  cldllycmp  17511  kgencmp2  17531  llycmpkgen2  17535  1stckgen  17539  txkgen  17637  cnextfres  18052  zdis  18800  cnmpt2pc  18906  dvbss  19741  dvreslem  19749  dvres2lem  19750  dvcnp2  19759  dvmptres  19802  ulmdvlem3  20271  psercn  20295  abelth  20310  cvxpcon  24882  cvmscld  24913  cnambfre  26154
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-oadd 6687  df-er 6864  df-en 7069  df-fin 7072  df-fi 7374  df-rest 13605  df-topgen 13622  df-top 16918  df-bases 16920
  Copyright terms: Public domain W3C validator