MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restsn2 Structured version   Unicode version

Theorem restsn2 19438
Description: The subspace topology induced by a singleton. (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 16-Sep-2015.)
Assertion
Ref Expression
restsn2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  { A } )  =  ~P { A }
)

Proof of Theorem restsn2
StepHypRef Expression
1 snssi 4171 . . 3  |-  ( A  e.  X  ->  { A }  C_  X )
2 resttopon 19428 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  { A }  C_  X )  ->  ( Jt  { A } )  e.  (TopOn `  { A } ) )
31, 2sylan2 474 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  { A } )  e.  (TopOn `  { A } ) )
4 topsn 19203 . 2  |-  ( ( Jt  { A } )  e.  (TopOn `  { A } )  ->  ( Jt  { A } )  =  ~P { A }
)
53, 4syl 16 1  |-  ( ( J  e.  (TopOn `  X )  /\  A  e.  X )  ->  ( Jt  { A } )  =  ~P { A }
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3476   ~Pcpw 4010   {csn 4027   ` cfv 5586  (class class class)co 6282   ↾t crest 14672  TopOnctopon 19162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-recs 7039  df-rdg 7073  df-oadd 7131  df-er 7308  df-en 7514  df-fin 7517  df-fi 7867  df-rest 14674  df-topgen 14695  df-top 19166  df-bases 19168  df-topon 19169
This theorem is referenced by:  concompid  19698  xkohaus  19889  xkoptsub  19890  cvmlift2lem9  28396  cncfdmsn  31229
  Copyright terms: Public domain W3C validator