MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restopn2 Structured version   Unicode version

Theorem restopn2 20124
Description: The if  A is open, then  B is open in  A iff it is an open subset of  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Assertion
Ref Expression
restopn2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )

Proof of Theorem restopn2
StepHypRef Expression
1 elssuni 4251 . . . . 5  |-  ( B  e.  ( Jt  A )  ->  B  C_  U. ( Jt  A ) )
2 elssuni 4251 . . . . . . 7  |-  ( A  e.  J  ->  A  C_ 
U. J )
3 eqid 2429 . . . . . . . 8  |-  U. J  =  U. J
43restuni 20109 . . . . . . 7  |-  ( ( J  e.  Top  /\  A  C_  U. J )  ->  A  =  U. ( Jt  A ) )
52, 4sylan2 476 . . . . . 6  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  A  =  U. ( Jt  A ) )
65sseq2d 3498 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  C_  A  <->  B 
C_  U. ( Jt  A ) ) )
71, 6syl5ibr 224 . . . 4  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  ->  B  C_  A ) )
87pm4.71rd 639 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
9 simpll 758 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  J  e.  Top )
10 simplr 760 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  e.  J )
11 ssid 3489 . . . . . 6  |-  A  C_  A
1211a1i 11 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  A  C_  A
)
13 simpr 462 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  B  C_  A
)
14 restopnb 20122 . . . . 5  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  ( A  e.  J  /\  A  C_  A  /\  B  C_  A
) )  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
159, 10, 10, 12, 13, 14syl23anc 1271 . . . 4  |-  ( ( ( J  e.  Top  /\  A  e.  J )  /\  B  C_  A
)  ->  ( B  e.  J  <->  B  e.  ( Jt  A ) ) )
1615pm5.32da 645 . . 3  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( ( B  C_  A  /\  B  e.  J
)  <->  ( B  C_  A  /\  B  e.  ( Jt  A ) ) ) )
178, 16bitr4d 259 . 2  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  C_  A  /\  B  e.  J ) ) )
18 ancom 451 . 2  |-  ( ( B  C_  A  /\  B  e.  J )  <->  ( B  e.  J  /\  B  C_  A ) )
1917, 18syl6bb 264 1  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( B  e.  ( Jt  A )  <->  ( B  e.  J  /\  B  C_  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870    C_ wss 3442   U.cuni 4222  (class class class)co 6305   ↾t crest 15278   Topctop 19848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-oadd 7194  df-er 7371  df-en 7578  df-fin 7581  df-fi 7931  df-rest 15280  df-topgen 15301  df-top 19852  df-bases 19853  df-topon 19854
This theorem is referenced by:  restdis  20125  perfopn  20132  llyrest  20431  nllyrest  20432  llyidm  20434  nllyidm  20435  lly1stc  20442  qtoprest  20663  xrtgioo  21735  lhop  22845  efopnlem2  23467  cvmopnlem  29789  cvmlift2lem9a  29814  cvmlift2lem9  29822  cvmlift3lem6  29835
  Copyright terms: Public domain W3C validator