MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restnlly Structured version   Unicode version

Theorem restnlly 20483
Description: If the property  A passes to open subspaces, then a space is n-locally  A iff it is locally  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
restlly.1  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
Assertion
Ref Expression
restnlly  |-  ( ph  -> 𝑛Locally  A  = Locally  A )
Distinct variable groups:    x, j, A    ph, j, x

Proof of Theorem restnlly
Dummy variables  k 
s  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 20474 . . . . . 6  |-  ( k  e. 𝑛Locally  A  ->  k  e.  Top )
21adantl 467 . . . . 5  |-  ( (
ph  /\  k  e. 𝑛Locally  A
)  ->  k  e.  Top )
3 nlly2i 20477 . . . . . . . . 9  |-  ( ( k  e. 𝑛Locally  A  /\  y  e.  k  /\  u  e.  y )  ->  E. s  e.  ~P  y E. x  e.  k  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) )
433adant1l 1256 . . . . . . . 8  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  ->  E. s  e.  ~P  y E. x  e.  k  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) )
5 simprl 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  k )
6 simprr2 1054 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  C_  s
)
7 simplr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  s  e.  ~P y )
87elpwid 3989 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  s  C_  y
)
96, 8sstrd 3474 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  C_  y
)
10 selpw 3986 . . . . . . . . . . . . . 14  |-  ( x  e.  ~P y  <->  x  C_  y
)
119, 10sylibr 215 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  ~P y )
125, 11elind 3650 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  ( k  i^i  ~P y
) )
13 simprr1 1053 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  u  e.  x
)
14 simpll1 1044 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( ph  /\  k  e. 𝑛Locally  A ) )
1514simprd 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  k  e. 𝑛Locally  A )
1615, 1syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  k  e.  Top )
17 restabs 20167 . . . . . . . . . . . . . 14  |-  ( ( k  e.  Top  /\  x  C_  s  /\  s  e.  ~P y )  -> 
( ( kt  s )t  x )  =  ( kt  x ) )
1816, 6, 7, 17syl3anc 1264 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( ( kt  s )t  x )  =  ( kt  x ) )
19 simprr3 1055 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( kt  s )  e.  A )
2014simpld 460 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ph )
21 restlly.1 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
2221expr 618 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  A )  ->  (
x  e.  j  -> 
( jt  x )  e.  A
) )
2322ralrimiva 2839 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. j  e.  A  ( x  e.  j  ->  ( jt  x )  e.  A
) )
2420, 23syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  A. j  e.  A  ( x  e.  j  ->  ( jt  x )  e.  A
) )
25 df-ss 3450 . . . . . . . . . . . . . . . 16  |-  ( x 
C_  s  <->  ( x  i^i  s )  =  x )
266, 25sylib 199 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( x  i^i  s )  =  x )
27 elrestr 15314 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  Top  /\  s  e.  ~P y  /\  x  e.  k
)  ->  ( x  i^i  s )  e.  ( kt  s ) )
2816, 7, 5, 27syl3anc 1264 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( x  i^i  s )  e.  ( kt  s ) )
2926, 28eqeltrrd 2511 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  ( kt  s ) )
30 eleq2 2495 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( kt  s )  ->  ( x  e.  j  <->  x  e.  (
kt  s ) ) )
31 oveq1 6308 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( kt  s )  ->  ( jt  x )  =  ( ( kt  s )t  x ) )
3231eleq1d 2491 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( kt  s )  ->  ( ( jt  x )  e.  A  <->  ( (
kt  s )t  x )  e.  A
) )
3330, 32imbi12d 321 . . . . . . . . . . . . . . 15  |-  ( j  =  ( kt  s )  ->  ( ( x  e.  j  ->  (
jt  x )  e.  A
)  <->  ( x  e.  ( kt  s )  -> 
( ( kt  s )t  x )  e.  A ) ) )
3433rspcv 3178 . . . . . . . . . . . . . 14  |-  ( ( kt  s )  e.  A  ->  ( A. j  e.  A  ( x  e.  j  ->  ( jt  x
)  e.  A )  ->  ( x  e.  ( kt  s )  -> 
( ( kt  s )t  x )  e.  A ) ) )
3519, 24, 29, 34syl3c 63 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( ( kt  s )t  x )  e.  A
)
3618, 35eqeltrrd 2511 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( kt  x )  e.  A )
3712, 13, 36jca32 537 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( x  e.  ( k  i^i  ~P y )  /\  (
u  e.  x  /\  ( kt  x )  e.  A
) ) )
3837ex 435 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  ->  (
( x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) )  ->  ( x  e.  ( k  i^i  ~P y )  /\  (
u  e.  x  /\  ( kt  x )  e.  A
) ) ) )
3938reximdv2 2896 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  ->  ( E. x  e.  k 
( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A )  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) ) )
4039rexlimdva 2917 . . . . . . . 8  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  ->  ( E. s  e.  ~P  y E. x  e.  k  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A )  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) ) )
414, 40mpd 15 . . . . . . 7  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) )
42413expb 1206 . . . . . 6  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  (
y  e.  k  /\  u  e.  y )
)  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) )
4342ralrimivva 2846 . . . . 5  |-  ( (
ph  /\  k  e. 𝑛Locally  A
)  ->  A. y  e.  k  A. u  e.  y  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) )
44 islly 20469 . . . . 5  |-  ( k  e. Locally  A  <->  ( k  e. 
Top  /\  A. y  e.  k  A. u  e.  y  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) ) )
452, 43, 44sylanbrc 668 . . . 4  |-  ( (
ph  /\  k  e. 𝑛Locally  A
)  ->  k  e. Locally  A )
4645ex 435 . . 3  |-  ( ph  ->  ( k  e. 𝑛Locally  A  -> 
k  e. Locally  A ) )
4746ssrdv 3470 . 2  |-  ( ph  -> 𝑛Locally  A 
C_ Locally  A )
48 llyssnlly 20479 . . 3  |- Locally  A  C_ 𝑛Locally  A
4948a1i 11 . 2  |-  ( ph  -> Locally 
A  C_ 𝑛Locally  A )
5047, 49eqssd 3481 1  |-  ( ph  -> 𝑛Locally  A  = Locally  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776    i^i cin 3435    C_ wss 3436   ~Pcpw 3979  (class class class)co 6301   ↾t crest 15306   Topctop 19903  Locally clly 20465  𝑛Locally cnlly 20466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-ral 2780  df-rex 2781  df-reu 2782  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-id 4764  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-rest 15308  df-top 19907  df-nei 20100  df-lly 20467  df-nlly 20468
This theorem is referenced by:  loclly  20488  hausnlly  20494
  Copyright terms: Public domain W3C validator