MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restnlly Structured version   Unicode version

Theorem restnlly 19777
Description: If the property  A passes to open subspaces, then a space is n-locally  A iff it is locally  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypothesis
Ref Expression
restlly.1  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
Assertion
Ref Expression
restnlly  |-  ( ph  -> 𝑛Locally  A  = Locally  A )
Distinct variable groups:    x, j, A    ph, j, x

Proof of Theorem restnlly
Dummy variables  k 
s  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nllytop 19768 . . . . . 6  |-  ( k  e. 𝑛Locally  A  ->  k  e.  Top )
21adantl 466 . . . . 5  |-  ( (
ph  /\  k  e. 𝑛Locally  A
)  ->  k  e.  Top )
3 nlly2i 19771 . . . . . . . . 9  |-  ( ( k  e. 𝑛Locally  A  /\  y  e.  k  /\  u  e.  y )  ->  E. s  e.  ~P  y E. x  e.  k  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) )
433adant1l 1220 . . . . . . . 8  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  ->  E. s  e.  ~P  y E. x  e.  k  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) )
5 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  k )
6 simprr2 1045 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  C_  s
)
7 simplr 754 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  s  e.  ~P y )
87elpwid 4020 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  s  C_  y
)
96, 8sstrd 3514 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  C_  y
)
10 selpw 4017 . . . . . . . . . . . . . 14  |-  ( x  e.  ~P y  <->  x  C_  y
)
119, 10sylibr 212 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  ~P y )
125, 11elind 3688 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  ( k  i^i  ~P y
) )
13 simprr1 1044 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  u  e.  x
)
14 simpll1 1035 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( ph  /\  k  e. 𝑛Locally  A ) )
1514simprd 463 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  k  e. 𝑛Locally  A )
1615, 1syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  k  e.  Top )
17 restabs 19460 . . . . . . . . . . . . . 14  |-  ( ( k  e.  Top  /\  x  C_  s  /\  s  e.  ~P y )  -> 
( ( kt  s )t  x )  =  ( kt  x ) )
1816, 6, 7, 17syl3anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( ( kt  s )t  x )  =  ( kt  x ) )
19 simprr3 1046 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( kt  s )  e.  A )
2014simpld 459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ph )
21 restlly.1 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
2221expr 615 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  j  e.  A )  ->  (
x  e.  j  -> 
( jt  x )  e.  A
) )
2322ralrimiva 2878 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. j  e.  A  ( x  e.  j  ->  ( jt  x )  e.  A
) )
2420, 23syl 16 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  A. j  e.  A  ( x  e.  j  ->  ( jt  x )  e.  A
) )
25 df-ss 3490 . . . . . . . . . . . . . . . 16  |-  ( x 
C_  s  <->  ( x  i^i  s )  =  x )
266, 25sylib 196 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( x  i^i  s )  =  x )
27 elrestr 14684 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  Top  /\  s  e.  ~P y  /\  x  e.  k
)  ->  ( x  i^i  s )  e.  ( kt  s ) )
2816, 7, 5, 27syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( x  i^i  s )  e.  ( kt  s ) )
2926, 28eqeltrrd 2556 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  x  e.  ( kt  s ) )
30 eleq2 2540 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( kt  s )  ->  ( x  e.  j  <->  x  e.  (
kt  s ) ) )
31 oveq1 6291 . . . . . . . . . . . . . . . . 17  |-  ( j  =  ( kt  s )  ->  ( jt  x )  =  ( ( kt  s )t  x ) )
3231eleq1d 2536 . . . . . . . . . . . . . . . 16  |-  ( j  =  ( kt  s )  ->  ( ( jt  x )  e.  A  <->  ( (
kt  s )t  x )  e.  A
) )
3330, 32imbi12d 320 . . . . . . . . . . . . . . 15  |-  ( j  =  ( kt  s )  ->  ( ( x  e.  j  ->  (
jt  x )  e.  A
)  <->  ( x  e.  ( kt  s )  -> 
( ( kt  s )t  x )  e.  A ) ) )
3433rspcv 3210 . . . . . . . . . . . . . 14  |-  ( ( kt  s )  e.  A  ->  ( A. j  e.  A  ( x  e.  j  ->  ( jt  x
)  e.  A )  ->  ( x  e.  ( kt  s )  -> 
( ( kt  s )t  x )  e.  A ) ) )
3519, 24, 29, 34syl3c 61 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( ( kt  s )t  x )  e.  A
)
3618, 35eqeltrrd 2556 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( kt  x )  e.  A )
3712, 13, 36jca32 535 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  /\  (
x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) ) )  ->  ( x  e.  ( k  i^i  ~P y )  /\  (
u  e.  x  /\  ( kt  x )  e.  A
) ) )
3837ex 434 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  ->  (
( x  e.  k  /\  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A ) )  ->  ( x  e.  ( k  i^i  ~P y )  /\  (
u  e.  x  /\  ( kt  x )  e.  A
) ) ) )
3938reximdv2 2934 . . . . . . . . 9  |-  ( ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  /\  s  e.  ~P y )  ->  ( E. x  e.  k 
( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A )  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) ) )
4039rexlimdva 2955 . . . . . . . 8  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  ->  ( E. s  e.  ~P  y E. x  e.  k  ( u  e.  x  /\  x  C_  s  /\  ( kt  s )  e.  A )  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) ) )
414, 40mpd 15 . . . . . . 7  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  y  e.  k  /\  u  e.  y )  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) )
42413expb 1197 . . . . . 6  |-  ( ( ( ph  /\  k  e. 𝑛Locally  A )  /\  (
y  e.  k  /\  u  e.  y )
)  ->  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) )
4342ralrimivva 2885 . . . . 5  |-  ( (
ph  /\  k  e. 𝑛Locally  A
)  ->  A. y  e.  k  A. u  e.  y  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) )
44 islly 19763 . . . . 5  |-  ( k  e. Locally  A  <->  ( k  e. 
Top  /\  A. y  e.  k  A. u  e.  y  E. x  e.  ( k  i^i  ~P y ) ( u  e.  x  /\  (
kt  x )  e.  A
) ) )
452, 43, 44sylanbrc 664 . . . 4  |-  ( (
ph  /\  k  e. 𝑛Locally  A
)  ->  k  e. Locally  A )
4645ex 434 . . 3  |-  ( ph  ->  ( k  e. 𝑛Locally  A  -> 
k  e. Locally  A ) )
4746ssrdv 3510 . 2  |-  ( ph  -> 𝑛Locally  A 
C_ Locally  A )
48 llyssnlly 19773 . . 3  |- Locally  A  C_ 𝑛Locally  A
4948a1i 11 . 2  |-  ( ph  -> Locally 
A  C_ 𝑛Locally  A )
5047, 49eqssd 3521 1  |-  ( ph  -> 𝑛Locally  A  = Locally  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815    i^i cin 3475    C_ wss 3476   ~Pcpw 4010  (class class class)co 6284   ↾t crest 14676   Topctop 19189  Locally clly 19759  𝑛Locally cnlly 19760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-rest 14678  df-top 19194  df-nei 19393  df-lly 19761  df-nlly 19762
This theorem is referenced by:  loclly  19782  hausnlly  19788
  Copyright terms: Public domain W3C validator