MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restmetu Structured version   Visualization version   Unicode version

Theorem restmetu 21585
Description: The uniform structure generated by the restriction of a metric is its trace. (Contributed by Thierry Arnoux, 18-Dec-2017.)
Assertion
Ref Expression
restmetu  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( (metUnif `  D
)t  ( A  X.  A
) )  =  (metUnif `  ( D  |`  ( A  X.  A ) ) ) )

Proof of Theorem restmetu
Dummy variables  a 
b  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1008 . . . 4  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  A  =/=  (/) )
2 psmetres2 21330 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( D  |`  ( A  X.  A ) )  e.  (PsMet `  A )
)
323adant1 1026 . . . 4  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( D  |`  ( A  X.  A
) )  e.  (PsMet `  A ) )
4 oveq2 6298 . . . . . . . 8  |-  ( a  =  b  ->  (
0 [,) a )  =  ( 0 [,) b ) )
54imaeq2d 5168 . . . . . . 7  |-  ( a  =  b  ->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) )  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
65cbvmptv 4495 . . . . . 6  |-  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  =  ( b  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )
76rneqi 5061 . . . . 5  |-  ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  =  ran  ( b  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
87metustfbas 21572 . . . 4  |-  ( ( A  =/=  (/)  /\  ( D  |`  ( A  X.  A ) )  e.  (PsMet `  A )
)  ->  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  e.  ( fBas `  ( A  X.  A ) ) )
91, 3, 8syl2anc 667 . . 3  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  e.  ( fBas `  ( A  X.  A ) ) )
10 fgval 20885 . . 3  |-  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  e.  (
fBas `  ( A  X.  A ) )  -> 
( ( A  X.  A ) filGen ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) ) )  =  { v  e.  ~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } )
119, 10syl 17 . 2  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( ( A  X.  A ) filGen ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) ) )  =  { v  e.  ~P ( A  X.  A
)  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } )
12 metuval 21564 . . 3  |-  ( ( D  |`  ( A  X.  A ) )  e.  (PsMet `  A )  ->  (metUnif `  ( D  |`  ( A  X.  A
) ) )  =  ( ( A  X.  A ) filGen ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) ) ) )
133, 12syl 17 . 2  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  (metUnif `  ( D  |`  ( A  X.  A
) ) )  =  ( ( A  X.  A ) filGen ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) ) ) )
14 fvex 5875 . . . 4  |-  (metUnif `  D
)  e.  _V
153elfvexd 5893 . . . . 5  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  A  e.  _V )
16 xpexg 6593 . . . . 5  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( A  X.  A
)  e.  _V )
1715, 15, 16syl2anc 667 . . . 4  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( A  X.  A )  e.  _V )
18 restval 15325 . . . 4  |-  ( ( (metUnif `  D )  e.  _V  /\  ( A  X.  A )  e. 
_V )  ->  (
(metUnif `  D )t  ( A  X.  A ) )  =  ran  ( v  e.  (metUnif `  D
)  |->  ( v  i^i  ( A  X.  A
) ) ) )
1914, 17, 18sylancr 669 . . 3  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( (metUnif `  D
)t  ( A  X.  A
) )  =  ran  ( v  e.  (metUnif `  D )  |->  ( v  i^i  ( A  X.  A ) ) ) )
20 inss2 3653 . . . . . . . . . . 11  |-  ( v  i^i  ( A  X.  A ) )  C_  ( A  X.  A
)
21 sseq1 3453 . . . . . . . . . . 11  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  (
u  C_  ( A  X.  A )  <->  ( v  i^i  ( A  X.  A
) )  C_  ( A  X.  A ) ) )
2220, 21mpbiri 237 . . . . . . . . . 10  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  u  C_  ( A  X.  A
) )
23 vex 3048 . . . . . . . . . . 11  |-  u  e. 
_V
2423elpw 3957 . . . . . . . . . 10  |-  ( u  e.  ~P ( A  X.  A )  <->  u  C_  ( A  X.  A ) )
2522, 24sylibr 216 . . . . . . . . 9  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  u  e.  ~P ( A  X.  A ) )
2625rexlimivw 2876 . . . . . . . 8  |-  ( E. v  e.  (metUnif `  D
) u  =  ( v  i^i  ( A  X.  A ) )  ->  u  e.  ~P ( A  X.  A
) )
2726adantl 468 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )  ->  u  e.  ~P ( A  X.  A
) )
28 nfv 1761 . . . . . . . . . . . 12  |-  F/ a ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )
29 nfmpt1 4492 . . . . . . . . . . . . . 14  |-  F/_ a
( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
3029nfrn 5077 . . . . . . . . . . . . 13  |-  F/_ a ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
3130nfcri 2586 . . . . . . . . . . . 12  |-  F/ a  w  e.  ran  (
a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
3228, 31nfan 2011 . . . . . . . . . . 11  |-  F/ a ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )
33 nfv 1761 . . . . . . . . . . 11  |-  F/ a  w  C_  v
3432, 33nfan 2011 . . . . . . . . . 10  |-  F/ a ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )  /\  w  C_  v )
35 nfmpt1 4492 . . . . . . . . . . . . 13  |-  F/_ a
( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
3635nfrn 5077 . . . . . . . . . . . 12  |-  F/_ a ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
37 nfcv 2592 . . . . . . . . . . . 12  |-  F/_ a ~P u
3836, 37nfin 3639 . . . . . . . . . . 11  |-  F/_ a
( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )
39 nfcv 2592 . . . . . . . . . . 11  |-  F/_ a (/)
4038, 39nfne 2723 . . . . . . . . . 10  |-  F/ a ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  =/=  (/)
41 simplr 762 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
a  e.  RR+ )
42 ineq1 3627 . . . . . . . . . . . . . . 15  |-  ( w  =  ( `' D " ( 0 [,) a
) )  ->  (
w  i^i  ( A  X.  A ) )  =  ( ( `' D " ( 0 [,) a
) )  i^i  ( A  X.  A ) ) )
4342adantl 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) )  =  ( ( `' D " ( 0 [,) a ) )  i^i  ( A  X.  A ) ) )
44 simp2 1009 . . . . . . . . . . . . . . . 16  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  D  e.  (PsMet `  X ) )
45 psmetf 21322 . . . . . . . . . . . . . . . 16  |-  ( D  e.  (PsMet `  X
)  ->  D :
( X  X.  X
) --> RR* )
46 ffun 5731 . . . . . . . . . . . . . . . 16  |-  ( D : ( X  X.  X ) --> RR*  ->  Fun 
D )
47 respreima 6009 . . . . . . . . . . . . . . . 16  |-  ( Fun 
D  ->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) )  =  ( ( `' D " ( 0 [,) a
) )  i^i  ( A  X.  A ) ) )
4844, 45, 46, 474syl 19 . . . . . . . . . . . . . . 15  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) )  =  ( ( `' D "
( 0 [,) a
) )  i^i  ( A  X.  A ) ) )
4948ad6antr 742 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) )  =  ( ( `' D " ( 0 [,) a ) )  i^i  ( A  X.  A ) ) )
5043, 49eqtr4d 2488 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )
51 rspe 2845 . . . . . . . . . . . . 13  |-  ( ( a  e.  RR+  /\  (
w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  ->  E. a  e.  RR+  ( w  i^i  ( A  X.  A
) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
5241, 50, 51syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  ->  E. a  e.  RR+  (
w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
53 vex 3048 . . . . . . . . . . . . . 14  |-  w  e. 
_V
5453inex1 4544 . . . . . . . . . . . . 13  |-  ( w  i^i  ( A  X.  A ) )  e. 
_V
55 eqid 2451 . . . . . . . . . . . . . 14  |-  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  =  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )
5655elrnmpt 5081 . . . . . . . . . . . . 13  |-  ( ( w  i^i  ( A  X.  A ) )  e.  _V  ->  (
( w  i^i  ( A  X.  A ) )  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  <->  E. a  e.  RR+  (
w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) ) )
5754, 56ax-mp 5 . . . . . . . . . . . 12  |-  ( ( w  i^i  ( A  X.  A ) )  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  <->  E. a  e.  RR+  (
w  i^i  ( A  X.  A ) )  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )
5852, 57sylibr 216 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) )  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) ) )
59 simpllr 769 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  ->  w  C_  v )
60 ssinss1 3660 . . . . . . . . . . . . 13  |-  ( w 
C_  v  ->  (
w  i^i  ( A  X.  A ) )  C_  v )
6159, 60syl 17 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) ) 
C_  v )
62 inss2 3653 . . . . . . . . . . . . 13  |-  ( w  i^i  ( A  X.  A ) )  C_  ( A  X.  A
)
6362a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A ) )
64 pweq 3954 . . . . . . . . . . . . . . . 16  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  ~P u  =  ~P (
v  i^i  ( A  X.  A ) ) )
6564eleq2d 2514 . . . . . . . . . . . . . . 15  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  (
( w  i^i  ( A  X.  A ) )  e.  ~P u  <->  ( w  i^i  ( A  X.  A
) )  e.  ~P ( v  i^i  ( A  X.  A ) ) ) )
6654elpw 3957 . . . . . . . . . . . . . . 15  |-  ( ( w  i^i  ( A  X.  A ) )  e.  ~P ( v  i^i  ( A  X.  A ) )  <->  ( w  i^i  ( A  X.  A
) )  C_  (
v  i^i  ( A  X.  A ) ) )
6765, 66syl6bb 265 . . . . . . . . . . . . . 14  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  (
( w  i^i  ( A  X.  A ) )  e.  ~P u  <->  ( w  i^i  ( A  X.  A
) )  C_  (
v  i^i  ( A  X.  A ) ) ) )
68 ssin 3654 . . . . . . . . . . . . . 14  |-  ( ( ( w  i^i  ( A  X.  A ) ) 
C_  v  /\  (
w  i^i  ( A  X.  A ) )  C_  ( A  X.  A
) )  <->  ( w  i^i  ( A  X.  A
) )  C_  (
v  i^i  ( A  X.  A ) ) )
6967, 68syl6bbr 267 . . . . . . . . . . . . 13  |-  ( u  =  ( v  i^i  ( A  X.  A
) )  ->  (
( w  i^i  ( A  X.  A ) )  e.  ~P u  <->  ( (
w  i^i  ( A  X.  A ) )  C_  v  /\  ( w  i^i  ( A  X.  A
) )  C_  ( A  X.  A ) ) ) )
7069ad5antlr 741 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ( w  i^i  ( A  X.  A
) )  e.  ~P u 
<->  ( ( w  i^i  ( A  X.  A
) )  C_  v  /\  ( w  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A ) ) ) )
7161, 63, 70mpbir2and 933 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( w  i^i  ( A  X.  A ) )  e.  ~P u )
72 inelcm 3819 . . . . . . . . . . 11  |-  ( ( ( w  i^i  ( A  X.  A ) )  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  /\  ( w  i^i  ( A  X.  A
) )  e.  ~P u )  ->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) )
7358, 71, 72syl2anc 667 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  /\  w  e. 
ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )  /\  w  C_  v
)  /\  a  e.  RR+ )  /\  w  =  ( `' D "
( 0 [,) a
) ) )  -> 
( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  =/=  (/) )
74 simplr 762 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )  /\  w  C_  v )  ->  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) )
75 eqid 2451 . . . . . . . . . . . . 13  |-  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  =  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )
7675elrnmpt 5081 . . . . . . . . . . . 12  |-  ( w  e.  _V  ->  (
w  e.  ran  (
a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  <->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) ) )
7753, 76ax-mp 5 . . . . . . . . . . 11  |-  ( w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  <->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
7874, 77sylib 200 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )  /\  w  C_  v )  ->  E. a  e.  RR+  w  =  ( `' D " ( 0 [,) a ) ) )
7934, 40, 73, 78r19.29af2 2928 . . . . . . . . 9  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  /\  u  =  ( v  i^i  ( A  X.  A
) ) )  /\  w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )  /\  w  C_  v )  ->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) )
80 ssn0 3767 . . . . . . . . . . . . . 14  |-  ( ( A  C_  X  /\  A  =/=  (/) )  ->  X  =/=  (/) )
8180ancoms 455 . . . . . . . . . . . . 13  |-  ( ( A  =/=  (/)  /\  A  C_  X )  ->  X  =/=  (/) )
82813adant2 1027 . . . . . . . . . . . 12  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  X  =/=  (/) )
83 metuel 21579 . . . . . . . . . . . 12  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( v  e.  (metUnif `  D )  <->  ( v  C_  ( X  X.  X )  /\  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  v
) ) )
8482, 44, 83syl2anc 667 . . . . . . . . . . 11  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( v  e.  (metUnif `  D )  <->  ( v  C_  ( X  X.  X )  /\  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  v
) ) )
8584simplbda 630 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  v
)
8685adantr 467 . . . . . . . . 9  |-  ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) w 
C_  v )
8779, 86r19.29a 2932 . . . . . . . 8  |-  ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  v  e.  (metUnif `  D )
)  /\  u  =  ( v  i^i  ( A  X.  A ) ) )  ->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) )
8887r19.29an 2931 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )  ->  ( ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  =/=  (/) )
8927, 88jca 535 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )  ->  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )
90 simprl 764 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  u  e.  ~P ( A  X.  A
) )
9190elpwid 3961 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  u  C_  ( A  X.  A ) )
92 simpl3 1013 . . . . . . . . . . 11  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  A  C_  X
)
93 xpss12 4940 . . . . . . . . . . 11  |-  ( ( A  C_  X  /\  A  C_  X )  -> 
( A  X.  A
)  C_  ( X  X.  X ) )
9492, 92, 93syl2anc 667 . . . . . . . . . 10  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( A  X.  A )  C_  ( X  X.  X ) )
9591, 94sstrd 3442 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  u  C_  ( X  X.  X ) )
96 difssd 3561 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( ( X  X.  X )  \ 
( A  X.  A
) )  C_  ( X  X.  X ) )
9795, 96unssd 3610 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  C_  ( X  X.  X ) )
98 simplr 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
b  e.  RR+ )
99 eqidd 2452 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' D "
( 0 [,) b
) )  =  ( `' D " ( 0 [,) b ) ) )
1004imaeq2d 5168 . . . . . . . . . . . . . 14  |-  ( a  =  b  ->  ( `' D " ( 0 [,) a ) )  =  ( `' D " ( 0 [,) b
) ) )
101100eqeq2d 2461 . . . . . . . . . . . . 13  |-  ( a  =  b  ->  (
( `' D "
( 0 [,) b
) )  =  ( `' D " ( 0 [,) a ) )  <-> 
( `' D "
( 0 [,) b
) )  =  ( `' D " ( 0 [,) b ) ) ) )
102101rspcev 3150 . . . . . . . . . . . 12  |-  ( ( b  e.  RR+  /\  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) b
) ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) a
) ) )
10398, 99, 102syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  ->  E. a  e.  RR+  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) a
) ) )
10444ad4antr 738 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  ->  D  e.  (PsMet `  X
) )
105 cnvexg 6739 . . . . . . . . . . . 12  |-  ( D  e.  (PsMet `  X
)  ->  `' D  e.  _V )
106 imaexg 6730 . . . . . . . . . . . 12  |-  ( `' D  e.  _V  ->  ( `' D " ( 0 [,) b ) )  e.  _V )
10775elrnmpt 5081 . . . . . . . . . . . 12  |-  ( ( `' D " ( 0 [,) b ) )  e.  _V  ->  (
( `' D "
( 0 [,) b
) )  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  <->  E. a  e.  RR+  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) a
) ) ) )
108104, 105, 106, 1074syl 19 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( `' D " ( 0 [,) b
) )  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  <->  E. a  e.  RR+  ( `' D " ( 0 [,) b ) )  =  ( `' D " ( 0 [,) a
) ) ) )
109103, 108mpbird 236 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' D "
( 0 [,) b
) )  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) )
110 cnvimass 5188 . . . . . . . . . . . . . . . 16  |-  ( `' D " ( 0 [,) b ) ) 
C_  dom  D
111 fdm 5733 . . . . . . . . . . . . . . . . 17  |-  ( D : ( X  X.  X ) --> RR*  ->  dom 
D  =  ( X  X.  X ) )
11245, 111syl 17 . . . . . . . . . . . . . . . 16  |-  ( D  e.  (PsMet `  X
)  ->  dom  D  =  ( X  X.  X
) )
113110, 112syl5sseq 3480 . . . . . . . . . . . . . . 15  |-  ( D  e.  (PsMet `  X
)  ->  ( `' D " ( 0 [,) b ) )  C_  ( X  X.  X
) )
114104, 113syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' D "
( 0 [,) b
) )  C_  ( X  X.  X ) )
115 ssdif0 3823 . . . . . . . . . . . . . 14  |-  ( ( `' D " ( 0 [,) b ) ) 
C_  ( X  X.  X )  <->  ( ( `' D " ( 0 [,) b ) ) 
\  ( X  X.  X ) )  =  (/) )
116114, 115sylib 200 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( `' D " ( 0 [,) b
) )  \  ( X  X.  X ) )  =  (/) )
117 0ss 3763 . . . . . . . . . . . . 13  |-  (/)  C_  u
118116, 117syl6eqss 3482 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( `' D " ( 0 [,) b
) )  \  ( X  X.  X ) ) 
C_  u )
119 respreima 6009 . . . . . . . . . . . . . 14  |-  ( Fun 
D  ->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) )  =  ( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) )
120104, 45, 46, 1194syl 19 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) )  =  ( ( `' D " ( 0 [,) b ) )  i^i  ( A  X.  A ) ) )
121 simpr 463 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
122 simpllr 769 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
v  e.  ~P u
)
123122elpwid 3961 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
v  C_  u )
124121, 123eqsstr3d 3467 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) )  C_  u )
125120, 124eqsstr3d 3467 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) 
C_  u )
126118, 125unssd 3610 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( ( ( `' D " ( 0 [,) b ) ) 
\  ( X  X.  X ) )  u.  ( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) )  C_  u )
127 ssundif 3851 . . . . . . . . . . . 12  |-  ( ( `' D " ( 0 [,) b ) ) 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  <->  ( ( `' D " ( 0 [,) b ) ) 
\  u )  C_  ( ( X  X.  X )  \  ( A  X.  A ) ) )
128 difcom 3852 . . . . . . . . . . . 12  |-  ( ( ( `' D "
( 0 [,) b
) )  \  u
)  C_  ( ( X  X.  X )  \ 
( A  X.  A
) )  <->  ( ( `' D " ( 0 [,) b ) ) 
\  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  C_  u )
129 difdif2 3700 . . . . . . . . . . . . 13  |-  ( ( `' D " ( 0 [,) b ) ) 
\  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  =  ( ( ( `' D " ( 0 [,) b ) ) 
\  ( X  X.  X ) )  u.  ( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) )
130129sseq1i 3456 . . . . . . . . . . . 12  |-  ( ( ( `' D "
( 0 [,) b
) )  \  (
( X  X.  X
)  \  ( A  X.  A ) ) ) 
C_  u  <->  ( (
( `' D "
( 0 [,) b
) )  \  ( X  X.  X ) )  u.  ( ( `' D " ( 0 [,) b ) )  i^i  ( A  X.  A ) ) ) 
C_  u )
131127, 128, 1303bitri 275 . . . . . . . . . . 11  |-  ( ( `' D " ( 0 [,) b ) ) 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  <->  ( ( ( `' D " ( 0 [,) b ) ) 
\  ( X  X.  X ) )  u.  ( ( `' D " ( 0 [,) b
) )  i^i  ( A  X.  A ) ) )  C_  u )
132126, 131sylibr 216 . . . . . . . . . 10  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  -> 
( `' D "
( 0 [,) b
) )  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) )
133 sseq1 3453 . . . . . . . . . . 11  |-  ( w  =  ( `' D " ( 0 [,) b
) )  ->  (
w  C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  <->  ( `' D " ( 0 [,) b
) )  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) ) )
134133rspcev 3150 . . . . . . . . . 10  |-  ( ( ( `' D "
( 0 [,) b
) )  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) )  /\  ( `' D " ( 0 [,) b ) ) 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) w 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) ) )
135109, 132, 134syl2anc 667 . . . . . . . . 9  |-  ( ( ( ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  /\  v  e.  ~P u )  /\  b  e.  RR+ )  /\  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) )
136 elin 3617 . . . . . . . . . . . . . 14  |-  ( v  e.  ( ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  <-> 
( v  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  /\  v  e.  ~P u ) )
137 vex 3048 . . . . . . . . . . . . . . . 16  |-  v  e. 
_V
1386elrnmpt 5081 . . . . . . . . . . . . . . . 16  |-  ( v  e.  _V  ->  (
v  e.  ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  <->  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) ) )
139137, 138ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( v  e.  ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  <->  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) ) )
140139anbi1i 701 . . . . . . . . . . . . . 14  |-  ( ( v  e.  ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  /\  v  e.  ~P u )  <->  ( E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) )  /\  v  e. 
~P u ) )
141 ancom 452 . . . . . . . . . . . . . 14  |-  ( ( E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) )  /\  v  e.  ~P u
)  <->  ( v  e. 
~P u  /\  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) ) ) )
142136, 140, 1413bitri 275 . . . . . . . . . . . . 13  |-  ( v  e.  ( ran  (
a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  <-> 
( v  e.  ~P u  /\  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) ) ) )
143142exbii 1718 . . . . . . . . . . . 12  |-  ( E. v  v  e.  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  <->  E. v
( v  e.  ~P u  /\  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) ) ) )
144 n0 3741 . . . . . . . . . . . 12  |-  ( ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  =/=  (/) 
<->  E. v  v  e.  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u ) )
145 df-rex 2743 . . . . . . . . . . . 12  |-  ( E. v  e.  ~P  u E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) b
) )  <->  E. v
( v  e.  ~P u  /\  E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) b ) ) ) )
146143, 144, 1453bitr4i 281 . . . . . . . . . . 11  |-  ( ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  =/=  (/) 
<->  E. v  e.  ~P  u E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
147146biimpi 198 . . . . . . . . . 10  |-  ( ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u )  =/=  (/)  ->  E. v  e.  ~P  u E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
148147ad2antll 735 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  E. v  e.  ~P  u E. b  e.  RR+  v  =  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) b ) ) )
149135, 148r19.29vva 2934 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) )
15082adantr 467 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  X  =/=  (/) )
15144adantr 467 . . . . . . . . 9  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  D  e.  (PsMet `  X ) )
152 metuel 21579 . . . . . . . . 9  |-  ( ( X  =/=  (/)  /\  D  e.  (PsMet `  X )
)  ->  ( (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) )  e.  (metUnif `  D
)  <->  ( ( u  u.  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  C_  ( X  X.  X
)  /\  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a
) ) ) w 
C_  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) ) ) ) )
153150, 151, 152syl2anc 667 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( ( u  u.  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  e.  (metUnif `  D )  <->  ( ( u  u.  (
( X  X.  X
)  \  ( A  X.  A ) ) ) 
C_  ( X  X.  X )  /\  E. w  e.  ran  ( a  e.  RR+  |->  ( `' D " ( 0 [,) a ) ) ) w  C_  (
u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) ) ) ) )
15497, 149, 153mpbir2and 933 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  e.  (metUnif `  D
) )
155 indir 3691 . . . . . . . . 9  |-  ( ( u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) )  i^i  ( A  X.  A ) )  =  ( ( u  i^i  ( A  X.  A
) )  u.  (
( ( X  X.  X )  \  ( A  X.  A ) )  i^i  ( A  X.  A ) ) )
156 incom 3625 . . . . . . . . . . 11  |-  ( ( A  X.  A )  i^i  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  =  ( ( ( X  X.  X )  \ 
( A  X.  A
) )  i^i  ( A  X.  A ) )
157 disjdif 3839 . . . . . . . . . . 11  |-  ( ( A  X.  A )  i^i  ( ( X  X.  X )  \ 
( A  X.  A
) ) )  =  (/)
158156, 157eqtr3i 2475 . . . . . . . . . 10  |-  ( ( ( X  X.  X
)  \  ( A  X.  A ) )  i^i  ( A  X.  A
) )  =  (/)
159158uneq2i 3585 . . . . . . . . 9  |-  ( ( u  i^i  ( A  X.  A ) )  u.  ( ( ( X  X.  X ) 
\  ( A  X.  A ) )  i^i  ( A  X.  A
) ) )  =  ( ( u  i^i  ( A  X.  A
) )  u.  (/) )
160 un0 3759 . . . . . . . . 9  |-  ( ( u  i^i  ( A  X.  A ) )  u.  (/) )  =  ( u  i^i  ( A  X.  A ) )
161155, 159, 1603eqtri 2477 . . . . . . . 8  |-  ( ( u  u.  ( ( X  X.  X ) 
\  ( A  X.  A ) ) )  i^i  ( A  X.  A ) )  =  ( u  i^i  ( A  X.  A ) )
162 df-ss 3418 . . . . . . . . 9  |-  ( u 
C_  ( A  X.  A )  <->  ( u  i^i  ( A  X.  A
) )  =  u )
16391, 162sylib 200 . . . . . . . 8  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  ( u  i^i  ( A  X.  A
) )  =  u )
164161, 163syl5req 2498 . . . . . . 7  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  u  =  ( ( u  u.  (
( X  X.  X
)  \  ( A  X.  A ) ) )  i^i  ( A  X.  A ) ) )
165 ineq1 3627 . . . . . . . . 9  |-  ( v  =  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  ->  ( v  i^i  ( A  X.  A
) )  =  ( ( u  u.  (
( X  X.  X
)  \  ( A  X.  A ) ) )  i^i  ( A  X.  A ) ) )
166165eqeq2d 2461 . . . . . . . 8  |-  ( v  =  ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  ->  ( u  =  ( v  i^i  ( A  X.  A
) )  <->  u  =  ( ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  i^i  ( A  X.  A ) ) ) )
167166rspcev 3150 . . . . . . 7  |-  ( ( ( u  u.  (
( X  X.  X
)  \  ( A  X.  A ) ) )  e.  (metUnif `  D
)  /\  u  =  ( ( u  u.  ( ( X  X.  X )  \  ( A  X.  A ) ) )  i^i  ( A  X.  A ) ) )  ->  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )
168154, 164, 167syl2anc 667 . . . . . 6  |-  ( ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  /\  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )  ->  E. v  e.  (metUnif `  D ) u  =  ( v  i^i  ( A  X.  A ) ) )
16989, 168impbida 843 . . . . 5  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) )  <->  ( u  e.  ~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) ) )
170 eqid 2451 . . . . . . 7  |-  ( v  e.  (metUnif `  D
)  |->  ( v  i^i  ( A  X.  A
) ) )  =  ( v  e.  (metUnif `  D )  |->  ( v  i^i  ( A  X.  A ) ) )
171170elrnmpt 5081 . . . . . 6  |-  ( u  e.  _V  ->  (
u  e.  ran  (
v  e.  (metUnif `  D
)  |->  ( v  i^i  ( A  X.  A
) ) )  <->  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) ) )
17223, 171ax-mp 5 . . . . 5  |-  ( u  e.  ran  ( v  e.  (metUnif `  D
)  |->  ( v  i^i  ( A  X.  A
) ) )  <->  E. v  e.  (metUnif `  D )
u  =  ( v  i^i  ( A  X.  A ) ) )
173 pweq 3954 . . . . . . . 8  |-  ( v  =  u  ->  ~P v  =  ~P u
)
174173ineq2d 3634 . . . . . . 7  |-  ( v  =  u  ->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P v )  =  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P u ) )
175174neeq1d 2683 . . . . . 6  |-  ( v  =  u  ->  (
( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P v )  =/=  (/) 
<->  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )
176175elrab 3196 . . . . 5  |-  ( u  e.  { v  e. 
~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) ) "
( 0 [,) a
) ) )  i^i 
~P v )  =/=  (/) }  <->  ( u  e. 
~P ( A  X.  A )  /\  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A
) ) " (
0 [,) a ) ) )  i^i  ~P u )  =/=  (/) ) )
177169, 172, 1763bitr4g 292 . . . 4  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( u  e. 
ran  ( v  e.  (metUnif `  D )  |->  ( v  i^i  ( A  X.  A ) ) )  <->  u  e.  { v  e.  ~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } ) )
178177eqrdv 2449 . . 3  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ran  ( v  e.  (metUnif `  D )  |->  ( v  i^i  ( A  X.  A ) ) )  =  { v  e.  ~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } )
17919, 178eqtrd 2485 . 2  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( (metUnif `  D
)t  ( A  X.  A
) )  =  {
v  e.  ~P ( A  X.  A )  |  ( ran  ( a  e.  RR+  |->  ( `' ( D  |`  ( A  X.  A ) )
" ( 0 [,) a ) ) )  i^i  ~P v )  =/=  (/) } )
18011, 13, 1793eqtr4rd 2496 1  |-  ( ( A  =/=  (/)  /\  D  e.  (PsMet `  X )  /\  A  C_  X )  ->  ( (metUnif `  D
)t  ( A  X.  A
) )  =  (metUnif `  ( D  |`  ( A  X.  A ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    /\ w3a 985    = wceq 1444   E.wex 1663    e. wcel 1887    =/= wne 2622   E.wrex 2738   {crab 2741   _Vcvv 3045    \ cdif 3401    u. cun 3402    i^i cin 3403    C_ wss 3404   (/)c0 3731   ~Pcpw 3951    |-> cmpt 4461    X. cxp 4832   `'ccnv 4833   dom cdm 4834   ran crn 4835    |` cres 4836   "cima 4837   Fun wfun 5576   -->wf 5578   ` cfv 5582  (class class class)co 6290   0cc0 9539   RR*cxr 9674   RR+crp 11302   [,)cico 11637   ↾t crest 15319  PsMetcpsmet 18954   fBascfbas 18958   filGencfg 18959  metUnifcmetu 18961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-id 4749  df-po 4755  df-so 4756  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-1st 6793  df-2nd 6794  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-rp 11303  df-ico 11641  df-rest 15321  df-psmet 18962  df-fbas 18967  df-fg 18968  df-metu 18969
This theorem is referenced by:  reust  22340  qqhucn  28796
  Copyright terms: Public domain W3C validator