MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restlly Structured version   Unicode version

Theorem restlly 20484
Description: If the property  A passes to open subspaces, then a space which is  A is also locally  A. (Contributed by Mario Carneiro, 2-Mar-2015.)
Hypotheses
Ref Expression
restlly.1  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
restlly.2  |-  ( ph  ->  A  C_  Top )
Assertion
Ref Expression
restlly  |-  ( ph  ->  A  C_ Locally  A )
Distinct variable groups:    x, j, A    ph, j, x

Proof of Theorem restlly
Dummy variables  u  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restlly.2 . . . . 5  |-  ( ph  ->  A  C_  Top )
21sselda 3464 . . . 4  |-  ( (
ph  /\  j  e.  A )  ->  j  e.  Top )
3 simprl 762 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  x  e.  j )
4 vex 3084 . . . . . . . . 9  |-  x  e. 
_V
54pwid 3993 . . . . . . . 8  |-  x  e. 
~P x
65a1i 11 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  x  e.  ~P x )
73, 6elind 3650 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  x  e.  ( j  i^i  ~P x ) )
8 simprr 764 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  y  e.  x )
9 restlly.1 . . . . . . . 8  |-  ( (
ph  /\  ( j  e.  A  /\  x  e.  j ) )  -> 
( jt  x )  e.  A
)
109anassrs 652 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  A )  /\  x  e.  j )  ->  (
jt  x )  e.  A
)
1110adantrr 721 . . . . . 6  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  ( jt  x
)  e.  A )
12 eleq2 2495 . . . . . . . 8  |-  ( u  =  x  ->  (
y  e.  u  <->  y  e.  x ) )
13 oveq2 6309 . . . . . . . . 9  |-  ( u  =  x  ->  (
jt  u )  =  ( jt  x ) )
1413eleq1d 2491 . . . . . . . 8  |-  ( u  =  x  ->  (
( jt  u )  e.  A  <->  ( jt  x )  e.  A
) )
1512, 14anbi12d 715 . . . . . . 7  |-  ( u  =  x  ->  (
( y  e.  u  /\  ( jt  u )  e.  A
)  <->  ( y  e.  x  /\  ( jt  x )  e.  A ) ) )
1615rspcev 3182 . . . . . 6  |-  ( ( x  e.  ( j  i^i  ~P x )  /\  ( y  e.  x  /\  ( jt  x )  e.  A ) )  ->  E. u  e.  ( j  i^i  ~P x ) ( y  e.  u  /\  (
jt  u )  e.  A
) )
177, 8, 11, 16syl12anc 1262 . . . . 5  |-  ( ( ( ph  /\  j  e.  A )  /\  (
x  e.  j  /\  y  e.  x )
)  ->  E. u  e.  ( j  i^i  ~P x ) ( y  e.  u  /\  (
jt  u )  e.  A
) )
1817ralrimivva 2846 . . . 4  |-  ( (
ph  /\  j  e.  A )  ->  A. x  e.  j  A. y  e.  x  E. u  e.  ( j  i^i  ~P x ) ( y  e.  u  /\  (
jt  u )  e.  A
) )
19 islly 20469 . . . 4  |-  ( j  e. Locally  A  <->  ( j  e. 
Top  /\  A. x  e.  j  A. y  e.  x  E. u  e.  ( j  i^i  ~P x ) ( y  e.  u  /\  (
jt  u )  e.  A
) ) )
202, 18, 19sylanbrc 668 . . 3  |-  ( (
ph  /\  j  e.  A )  ->  j  e. Locally  A )
2120ex 435 . 2  |-  ( ph  ->  ( j  e.  A  ->  j  e. Locally  A )
)
2221ssrdv 3470 1  |-  ( ph  ->  A  C_ Locally  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    e. wcel 1868   A.wral 2775   E.wrex 2776    i^i cin 3435    C_ wss 3436   ~Pcpw 3979  (class class class)co 6301   ↾t crest 15306   Topctop 19903  Locally clly 20465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ral 2780  df-rex 2781  df-rab 2784  df-v 3083  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-op 4003  df-uni 4217  df-br 4421  df-iota 5561  df-fv 5605  df-ov 6304  df-lly 20467
This theorem is referenced by:  llyidm  20489  nllyidm  20490  toplly  20491  hauslly  20493  lly1stc  20497
  Copyright terms: Public domain W3C validator