MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resthauslem Unicode version

Theorem resthauslem 17381
Description: Lemma for resthaus 17386 and similar theorems. If the topological property  A is preserved under injective preimages, then property  A passes to subspaces. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypotheses
Ref Expression
resthauslem.1  |-  ( J  e.  A  ->  J  e.  Top )
resthauslem.2  |-  ( ( J  e.  A  /\  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J )
-1-1-> ( S  i^i  U. J )  /\  (  _I  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  S )  Cn  J ) )  ->  ( Jt  S )  e.  A )
Assertion
Ref Expression
resthauslem  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( Jt  S )  e.  A
)

Proof of Theorem resthauslem
StepHypRef Expression
1 simpl 444 . 2  |-  ( ( J  e.  A  /\  S  e.  V )  ->  J  e.  A )
2 f1oi 5672 . . 3  |-  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J ) -1-1-onto-> ( S  i^i  U. J )
3 f1of1 5632 . . 3  |-  ( (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J ) -1-1-onto-> ( S  i^i  U. J )  ->  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J ) -1-1-> ( S  i^i  U. J ) )
42, 3mp1i 12 . 2  |-  ( ( J  e.  A  /\  S  e.  V )  ->  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J )
-1-1-> ( S  i^i  U. J ) )
5 inss2 3522 . . . . 5  |-  ( S  i^i  U. J ) 
C_  U. J
6 resabs1 5134 . . . . 5  |-  ( ( S  i^i  U. J
)  C_  U. J  -> 
( (  _I  |`  U. J
)  |`  ( S  i^i  U. J ) )  =  (  _I  |`  ( S  i^i  U. J ) ) )
75, 6ax-mp 8 . . . 4  |-  ( (  _I  |`  U. J )  |`  ( S  i^i  U. J ) )  =  (  _I  |`  ( S  i^i  U. J ) )
8 resthauslem.1 . . . . . . . 8  |-  ( J  e.  A  ->  J  e.  Top )
98adantr 452 . . . . . . 7  |-  ( ( J  e.  A  /\  S  e.  V )  ->  J  e.  Top )
10 eqid 2404 . . . . . . . 8  |-  U. J  =  U. J
1110toptopon 16953 . . . . . . 7  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
129, 11sylib 189 . . . . . 6  |-  ( ( J  e.  A  /\  S  e.  V )  ->  J  e.  (TopOn `  U. J ) )
13 idcn 17275 . . . . . 6  |-  ( J  e.  (TopOn `  U. J )  ->  (  _I  |`  U. J )  e.  ( J  Cn  J ) )
1412, 13syl 16 . . . . 5  |-  ( ( J  e.  A  /\  S  e.  V )  ->  (  _I  |`  U. J
)  e.  ( J  Cn  J ) )
1510cnrest 17303 . . . . 5  |-  ( ( (  _I  |`  U. J
)  e.  ( J  Cn  J )  /\  ( S  i^i  U. J
)  C_  U. J )  ->  ( (  _I  |`  U. J )  |`  ( S  i^i  U. J
) )  e.  ( ( Jt  ( S  i^i  U. J ) )  Cn  J ) )
1614, 5, 15sylancl 644 . . . 4  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( (  _I  |`  U. J
)  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  ( S  i^i  U. J ) )  Cn  J ) )
177, 16syl5eqelr 2489 . . 3  |-  ( ( J  e.  A  /\  S  e.  V )  ->  (  _I  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  ( S  i^i  U. J ) )  Cn  J ) )
1810restin 17184 . . . 4  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( Jt  S )  =  ( Jt  ( S  i^i  U. J ) ) )
1918oveq1d 6055 . . 3  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( ( Jt  S )  Cn  J )  =  ( ( Jt  ( S  i^i  U. J ) )  Cn  J ) )
2017, 19eleqtrrd 2481 . 2  |-  ( ( J  e.  A  /\  S  e.  V )  ->  (  _I  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  S )  Cn  J
) )
21 resthauslem.2 . 2  |-  ( ( J  e.  A  /\  (  _I  |`  ( S  i^i  U. J ) ) : ( S  i^i  U. J )
-1-1-> ( S  i^i  U. J )  /\  (  _I  |`  ( S  i^i  U. J ) )  e.  ( ( Jt  S )  Cn  J ) )  ->  ( Jt  S )  e.  A )
221, 4, 20, 21syl3anc 1184 1  |-  ( ( J  e.  A  /\  S  e.  V )  ->  ( Jt  S )  e.  A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    i^i cin 3279    C_ wss 3280   U.cuni 3975    _I cid 4453    |` cres 4839   -1-1->wf1 5410   -1-1-onto->wf1o 5412   ` cfv 5413  (class class class)co 6040   ↾t crest 13603   Topctop 16913  TopOnctopon 16914    Cn ccn 17242
This theorem is referenced by:  restt0  17384  restt1  17385  resthaus  17386
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-fin 7072  df-fi 7374  df-rest 13605  df-topgen 13622  df-top 16918  df-bases 16920  df-topon 16921  df-cn 17245
  Copyright terms: Public domain W3C validator