MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  restfn Structured version   Unicode version

Theorem restfn 15037
Description: The subspace topology operator is a function on pairs. (Contributed by Mario Carneiro, 1-May-2015.)
Assertion
Ref Expression
restfn  |-t  Fn  ( _V  X.  _V )

Proof of Theorem restfn
Dummy variables  x  j  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rest 15035 . 2  |-t  =  ( j  e.  _V ,  x  e. 
_V  |->  ran  ( y  e.  j  |->  ( y  i^i  x ) ) )
2 vex 3061 . . . 4  |-  j  e. 
_V
32mptex 6123 . . 3  |-  ( y  e.  j  |->  ( y  i^i  x ) )  e.  _V
43rnex 6717 . 2  |-  ran  (
y  e.  j  |->  ( y  i^i  x ) )  e.  _V
51, 4fnmpt2i 6852 1  |-t  Fn  ( _V  X.  _V )
Colors of variables: wff setvar class
Syntax hints:   _Vcvv 3058    i^i cin 3412    |-> cmpt 4452    X. cxp 4820   ran crn 4823    Fn wfn 5563   ↾t crest 15033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-oprab 6281  df-mpt2 6282  df-1st 6783  df-2nd 6784  df-rest 15035
This theorem is referenced by:  0rest  15042  restsspw  15044  firest  15045  restrcl  19949  restbas  19950  ssrest  19968  resstopn  19978
  Copyright terms: Public domain W3C validator